We derive the volume and surface components of the nuclear symmetry energy (NSE) and their ratio [1] within the coherent density fluctuation model [2, 3]. The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner and Skyrme energy-density functionals for nuclear matter. The obtained values of these quantities for the Ni, Sn, and Pb isotopic chains are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, and excitation energies to isobaric analog states. Apart from the density dependence investigated in our previous works [4, 5, 6], we study also the temperature dependence of the symmetry energy in finite nuclei [7] in the framework of the local density approximation combining it with the self-consistent Skyrme-HFB method using the cylindrical transformed deformed harmonic oscillator basis. The results for the thermal evolution of the NSE in the interval T=0—4 MeV show that its values decrease with temperature. The same formalism is applied to obtain the values of the volume and surface contributions to the NSE and their ratio at finite temperatures [8]. We confirm the existence of "kinks" of these quantities as functions of the mass number at T = 0 MeV for the double closed shell nuclei 78Ni and 132Sn and the lack of "kinks" for the Pb isotopes, as well as the disappearance of these kinks as the temperature increases.
References
[1] A. N. Antonov, M. K. Gaidarov, P. Sarriguren, and E. Moya de Guerra, Phys. Rev. C 94, 014319 (2016).
[2] A.N. Antonov, V.A. Nikolaev, and I.Zh. Petkov, Bulg. J. Phys. 6 (1979) 151; Z. Phys. A 297 (1980) 257; ibid 304 (1982) 239; Nuovo Cimento A 86 (1985) 23; A.N. Antonov et al., ibid 102 (1989) 1701; A.N. Antonov, D.N. Kadrev, and P.E. Hodgson, Phys. Rev. C 50 (1994) 164.
[3] A.N. Antonov, P.E. Hodgson, and I.Zh. Petkov, Nucleon Momentum and Density Distributions in Nuclei, Clarendon Press, Oxford (1988); Nucleon Correlations in Nuclei, Springer-Verlag, Berlin-Heidelberg-New York (1993).
[4] M. K. Gaidarov, A. N. Antonov, P. Sarriguren, and E. Moya de Guerra, Phys. Rev. C 84, 034316 (2011).
[5] M. K. Gaidarov, A. N. Antonov, P. Sarriguren, and E. Moya de Guerra, Phys. Rev. C 85, 064319 (2012).
[6] M. K. Gaidarov, P. Sarriguren, A. N. Antonov, and E. Moya de Guerra, Phys. Rev. C 89, 064301 (2014).
[7] A. N. Antonov, D. N. Kadrev, M. K. Gaidarov, P. Sarriguren, and E. Moya de Guerra, Phys. Rev. C 95, 024314 (2017).
[8] A. N. Antonov, D. N. Kadrev, M. K. Gaidarov, P. Sarriguren, and E. Moya de Guerra, Phys. Rev. C 98, 054315 (2018).