Internal Gas-Jet Target for High Intensity Electron Beam Experiments

Stephan Aulenbacher, University of Mainz International Wintermeeting on Nuclear Physics Bormio, Italy 2019

MESA

Motivation

MAGIX

The Jet-Target

Experiments@A1

Summary/Outlook

Motivation II: The Recirculation of MESA

MAGXOW

Motivation I: The MAGIX "Wishlist"

Precision

Low Backgrounds

High Resolution

- Angular Resolution (0.05°)
- Relative Momentum Resolution 10⁻⁴

Luminosity

• ~10³⁵ cm⁻²s⁻¹ (at 1 mA)

No windows at all

• Neither the beam nor the scattered particles have to pass a wall

Spin Polarization

• Not possible due to high pressures

Hydrodynamics I

$$u_{fin} = u_{fin}(p_1, p_2) = \sqrt{2\frac{\kappa}{\kappa - 1}\frac{p_2}{\rho_2}\left(1 - \left(\frac{p_1}{p_2}\right)^{\frac{\kappa - 1}{\kappa}}\right)}$$

Hydrodynamics II

Behavior from Bernoullis law

Hydrodynamics III

 $\rho uA = \text{const.}$ process $\frac{1}{u}\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{A}\frac{\mathrm{d}A}{\mathrm{d}x} + \frac{1}{\rho}\frac{\mathrm{d}\rho}{\mathrm{d}x} = 0$ $a^2 = \left(\frac{\partial p}{\partial \rho}\right)$ Speed of sound $\Rightarrow \quad \frac{1}{u}\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{A}\frac{\mathrm{d}A}{\mathrm{d}x} + \frac{1}{a^2\rho}\frac{\mathrm{d}p}{\mathrm{d}x} = 0$ Component of the Euler equation along $\frac{\partial u}{\partial x}u = -\frac{1}{\rho}\frac{\partial p}{\partial x}$ the streamline $\Rightarrow \quad \frac{1}{u}\frac{\mathrm{d}u}{\mathrm{d}x}(1-M^2) = -\frac{1}{A}\frac{\mathrm{d}A}{\mathrm{d}x}$

Continuity equation for an isentropic

Derivation along the streamline

Design of the Laval Nozzle

acceleration

acceleration

Design of the Laval Nozzle

Cluster Jets

MAG & DAM

Hagena parameter Γ^* provides an empirical access to the prediction of cluster sizes

$$\Gamma^* = \frac{\hat{k}p_0 \left(\frac{0.74d_n}{\tan \alpha_{0.5}}\right)^{0.85}}{T_0^{2.29}}$$

- Gas dependent constant \hat{k}
- Stagnation pressure p_0
- Temperature T_0 of the Gas
- Nozzle diameter d_n
- Expansion half angle $\alpha_{0.5}$
- $\Gamma^* < 200$: flow without cluster formation
- $200 < \Gamma^* < 1000$: transition to cluster formation
- $\Gamma^* > 1000$: immense condensation of clusters

Rearrangement of A1

Density Profile

$\rho = 2 * 10^{18} \, \mathrm{cm}^{-2}$

Proton Formfactor

Summary/Outlook

Summary

- Aspired Luminosity
- Low Backgrounds
- Proton Formfactor

Outlook

- Angular Range
- Veto Detector

