What it takes to calculate the magnetic moment of the muon in the standard model

Stefan Leupold

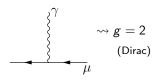
Uppsala University

57. International Winter Meeting on Nuclear Physics, Bormio, January 2019

Physics beyond the standard model

- Why is there more matter in the universe than antimatter?
- What is the nature of dark matter?
- Why is strong CP violation tiny or even absent?
- What is the origin of the neutrino masses?
- How to quantize gravity?

• . . .

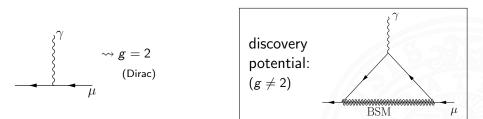

- \hookrightarrow search directions for physics Beyond the Standard Model (BSM):
 - at high(est) energies (excite BSM particles)
 - with high precision (measure the forces mediated by BSM fields)
 - historical note about the pion: force was measured and interpreted first (Yukawa), afterwards particle was found with predicted mass

High-precision standard model tests

to find traces of BSM physics

- need high-precision measurements
- AND high-precision standard-model calculation

prominent example: magnetic moment of the muon ("g - 2 of muon")

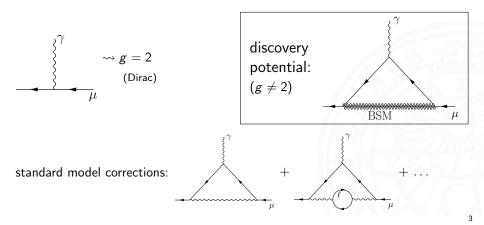


High-precision standard model tests

to find traces of BSM physics

- need high-precision measurements
- AND high-precision standard-model calculation

prominent example: magnetic moment of the muon ("g - 2 of muon")

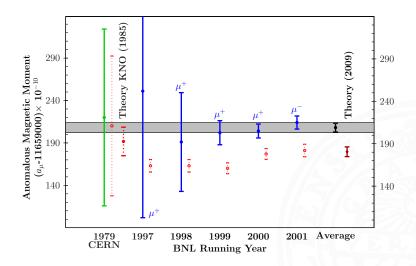


High-precision standard model tests

to find traces of BSM physics

- need high-precision measurements
- AND high-precision standard-model calculation

prominent example: magnetic moment of the muon ("g - 2 of muon")


Table of Contents

- 1 Search for physics beyond the standard model
- 2 g-2 of the muon, hadronic contributions
- Pion-pole part of hadronic light-by-light contribution
 - 4 Results, predictions, uncertainty estimates
- **5** Summary and outlook

Stefan Leupold g-2

g-2 of the muon

g-2 of the muon — status

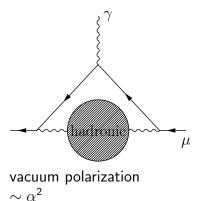
Jegerlehner/Nyffeler, Phys. Rept. 477, 1 (2009)

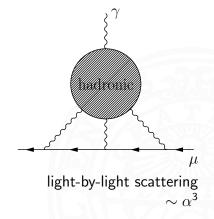
g-2 of the muon — experiment

current experimental value from BNL E821

$$a_{\mu} = rac{g-2}{2} = (116\,592\,089\pm 63) imes 10^{-11}$$

- now running: Muon g 2 experiment at Fermilab
- \hookrightarrow will reduce uncertainty by factor of 4
 - planned (needs approval): J-PARC E34

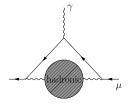

the more the merrier:

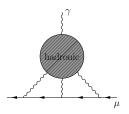

• desirable: high-quality data from several experiments

AND high-quality calculations with complementary approaches

g-2 of the muon — theory

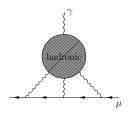
Largest uncertainty of standard model: hadronic contributions

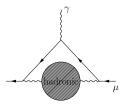

g-2 of the muon — status

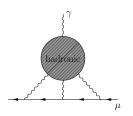

Standard model theory and experiment comparison [in units 10^{-11}].

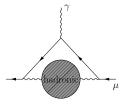
Contribution	Value	Error
QED incl. 4-loops + LO 5-loops	116 584 7 18.1	0.2
Leading hadronic vacuum polarization	6903.0	52.6
Subleading hadronic vacuum polarization	-100.3	1.1
Hadronic light-by-light	116.0	39.0
Weak incl. 2-loops	153.2	1.8
Theory	116 591 790.0	64.6
Experiment	116 592 080.0	63.0
Exp The. 3.2 standard deviations	290.0	90.3

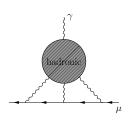
Jegerlehner/Nyffeler, Phys. Rept. 477, 1 (2009)

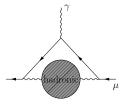

- in 2009:
 - dominant uncertainty in hadronic vacuum polarization (HVP)
 - largest relative uncertainty in hadronic light-by-light (HLbL)
- 2017 update of HVP: $(6931 \pm 34) \times 10^{-11}$
 - M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C 77, 827 (2017)

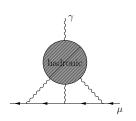


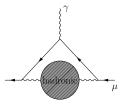

μ

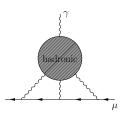

how to determine size of hadronic fluctuations? \hookrightarrow perturbative QCD?

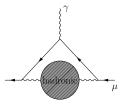


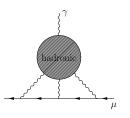

- \hookrightarrow perturbative QCD?
- \hookrightarrow does not work, contributions most sensitive to low-energy parts

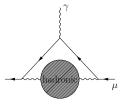


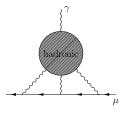

- \hookrightarrow perturbative QCD?
- \hookrightarrow does not work, contributions most sensitive to low-energy parts
- \hookrightarrow develop a phenomenological hadronic model or quark model P(?)




- \hookrightarrow perturbative QCD?
- \hookrightarrow does not work, contributions most sensitive to low-energy parts
- \hookrightarrow develop a phenomenological hadronic model or quark model P(?)
- \hookrightarrow this would yield a P-model prediction

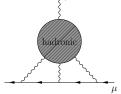


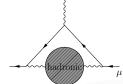

- \hookrightarrow perturbative QCD?
- \hookrightarrow does not work, contributions most sensitive to low-energy parts
- → develop a phenomenological hadronic model or quark model P(?)
- \hookrightarrow this would yield a P-model prediction
- ↔ but we want a standard-model prediction and with a reliable uncertainty estimate!



- \hookrightarrow perturbative QCD?
- \hookrightarrow does not work, contributions most sensitive to low-energy parts
- → develop a phenomenological hadronic model or quark model P(?)
- \hookrightarrow this would yield a P-model prediction
- ↔ but we want a standard-model prediction and with a reliable uncertainty estimate!
- \hookrightarrow need a model independent approach
- $\label{eq:constraint} \hookrightarrow \mbox{ lattice QCD, effective field theory, } \ldots, \\ \mbox{ or "data"}$

- \hookrightarrow perturbative QCD?
- \hookrightarrow does not work, contributions most sensitive to low-energy parts
- → develop a phenomenological hadronic model or quark model P(?)
- \hookrightarrow this would yield a P-model prediction
- ↔ but we want a standard-model prediction and with a reliable uncertainty estimate!
- \hookrightarrow need a model independent approach
- \hookrightarrow lattice QCD, effective field theory, ..., or "data" (\leftarrow highest accuracy so far)


Data-driven approach


vacuum polarization (used to be dominant uncertainty)

- directly related to cross sect. $e^+e^- \rightarrow$ hadrons (by dispersion relation)
- → measurable
- → ongoing improvements by international efforts

light-by-light scattering

(now dominant uncertainty)

• $\gamma^* \gamma^* \leftrightarrow hadron(s)$ not so easily accessible by experiment

- \hookrightarrow past: use phenom. models with conservative error estimates
- \leftrightarrow instead: crank dispersive machinery further

Colangelo/Hoferichter/Kubis/Procura/Stoffer, Phys.Lett. B738, 6 (2014)

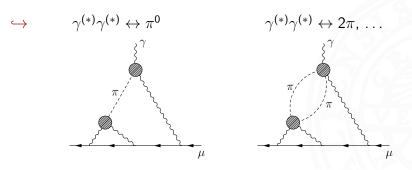
g - 2 of the muon

Unitarity and analyticity

- constraints from local quantum field theory: partial-wave amplitudes for reactions/decays must be
 - unitary:

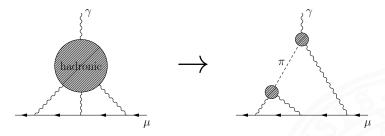
$$S S^{\dagger} = 1$$
, $S = 1 + iT \Rightarrow 2 \operatorname{Im} T = T T^{\dagger}$

 \hookrightarrow note that this is a matrix equation: Im $T_{A \to B} = \sum_{X} T_{A \to X} T^{\dagger}_{X \to B}$ • analytic (dispersion relations):

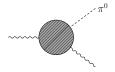

$$T(s) = \frac{1}{\pi} \int_{-\infty}^{\infty} ds' \, \frac{\operatorname{Im} T(s')}{s' - s - i\epsilon}$$

 \rightarrow can be used to calculate whole amplitude from imaginary part • practical limitation: too many states X at high energies \leftrightarrow in practice dispersion theory is a low-energy method ($\lesssim 1 \,\text{GeV}$)

Hadronic light-by-light contribution


true for all hadronic contributions:

- hadronic
- the lighter the hadronic system, the more important (though high-energy contributions not unimportant for light-by-light)



Using lowest-mass states

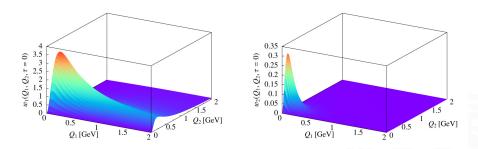
hadronic light-by-light (HLbL) contribution

 \rightsquigarrow need pion transition form factor (TFF)

 $ightarrow {\sf F}_{\pi^0\gamma^*\gamma^*}(q_1^2,q_2^2)$ with γ virtualities q_1^2 , q_2^2

Pion-pole contribution to HLbL

$$\begin{aligned} a_{\mu}^{\pi^{0}\text{-pole}} &= \left(\frac{\alpha}{\pi}\right)^{3} \int_{0}^{\infty} \mathrm{d}Q_{1} \int_{0}^{\infty} \mathrm{d}Q_{2} \int_{-1}^{1} \mathrm{d}\tau \\ &\times \left[w_{1}(Q_{1}, Q_{2}, \tau) F_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -Q_{3}^{2}) F_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2}, 0) \right. \\ &+ w_{2}(Q_{1}, Q_{2}, \tau) F_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -Q_{2}^{2}) F_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{3}^{2}, 0) \right] \end{aligned}$$


(Jegerlehner/Nyffeler, Phys. Rept. 477, 1 (2009))

- $Q_{1/2}^2 = -q_{1/2}^2$
- $Q_3^2 = Q_1^2 + 2Q_1Q_2\tau + Q_2^2$
- $\tau = \cos \sphericalangle (Q_1, Q_2)$

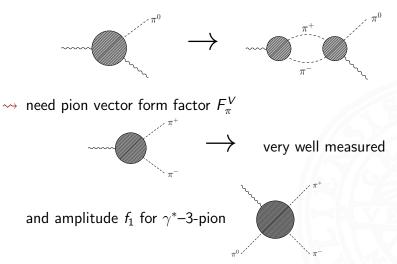
• weight functions $w_{1/2}$ peak strongly at low Q_i 's \rightsquigarrow figs.

g - 2 of the muon

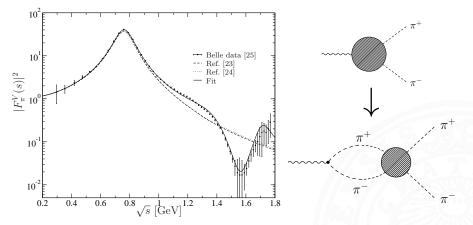
Weight functions

- weight functions $w_{1/2}$ peak strongly at low Q_i 's
- \hookrightarrow largest accuracy required for low-energy part of pion TFF $F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2)$

(Hoferichter, Hoid, Kubis, Leupold, Schneider, JHEP 1810, 141 (2018))

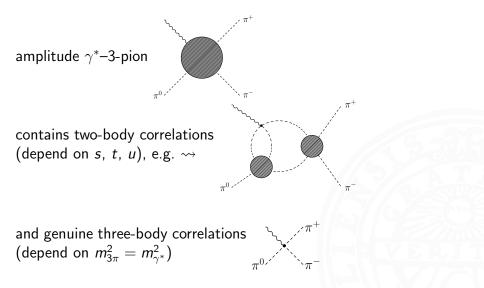

Representation of pion transition form factor (TFF)

 $F_{\pi^0\gamma^*\gamma^*}(q_1^2,q_2^2) = F_{\pi^0\gamma^*\gamma^*}^{\mathsf{disp}}(q_1^2,q_2^2) + F_{\pi^0\gamma^*\gamma^*}^{\mathsf{eff}}(q_1^2,q_2^2) + F_{\pi^0\gamma^*\gamma^*}^{\mathsf{asym}}(q_1^2,q_2^2)$

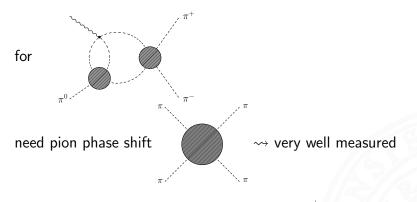

- $F_{\pi^0\gamma^*\gamma^*}(0,0)$ measured via $\pi^0 \to 2\gamma$ (highest precision from PrimEx)
- need low-energy part ("disp") with very high accuracy
- \hookrightarrow use dispersion theory and high-quality data
 - need reasonable behavior at high energies ("asym")
- \hookrightarrow guide from perturbative QCD, operator product expansion for pion distribution amplitude
 - need only schematic description at intermediate energies ("eff")
- \hookrightarrow use effective pole with
 - $\bullet\,$ residue fitted to decay width $\pi^0 \to 2\gamma$
 - mass fitted to data on singly-virtual pion TFF $F_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$

Dispersive reconstruction I

pion transition form factor

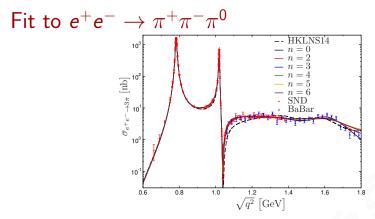


Pion vector form factor



pion phase shift very well known; fits to pion vector form factor Sebastian P. Schneider, Bastian Kubis, Franz Niecknig, Phys.Rev.D86:054013,2012

Dispersive reconstruction II


Required input

and genuine three-body correlations (one-parameter function!)

 \rightsquigarrow fit to cross section of $e^+e^-
ightarrow \pi^+\pi^-\pi^0$

Stefan Leupold

M. Hoferichter, B. Kubis, S.L., F. Niecknig, S. P. Schneider, Eur.Phys.J. C74, 3180 (2014)
M. Hoferichter, B.-L. Hoid, B. Kubis, S.L., S. P. Schneider, JHEP 1810, 141 (2018)

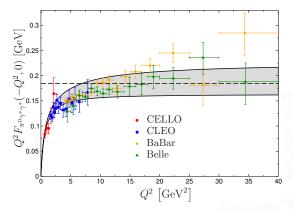
→ fully determines p-wave projected γ^* -3-pion amplitude f_1 → together with pion vector form factor F_{π}^V this enters finally the dispersive representation of the pion transition form factor

Representation of pion transition form factor (TFF)

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2,q_2^2) = F_{\pi^0\gamma^*\gamma^*}^{\mathsf{disp}}(q_1^2,q_2^2) + F_{\pi^0\gamma^*\gamma^*}^{\mathsf{eff}}(q_1^2,q_2^2) + F_{\pi^0\gamma^*\gamma^*}^{\mathsf{asym}}(q_1^2,q_2^2)$$

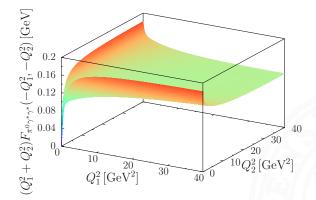
with double-spectral dispersive representation

$$\begin{split} \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}^{\mathsf{disp}}(-Q_{1}^{2},-Q_{2}^{2}) &= \frac{1}{\pi^{2}} \int_{4M_{\pi}^{2}}^{s_{\mathsf{iv}}} \mathsf{d}x \int_{s_{\mathsf{thr}}}^{s_{\mathsf{is}}} \mathsf{d}y \frac{\rho^{\mathsf{disp}}(x,y)}{(x+Q_{1}^{2})(y+Q_{2}^{2})} + (Q_{1} \leftrightarrow Q_{2}), \\ \rho^{\mathsf{disp}}(x,y) &= \frac{q_{\pi}^{3}(x)}{12\pi\sqrt{x}} \mathrm{Im}\Big[\big(\mathcal{F}_{\pi}^{V}(x)\big)^{*} f_{1}(x,y) \Big], \end{split}$$


and effective pole

$$\mathcal{F}^{
m eff}_{\pi^0\gamma^*\gamma^*}(q_1^2,q_2^2) = rac{g_{
m eff}}{4\pi^2 F_\pi} rac{M^4_{
m eff}}{(M^2_{
m eff}-q_1^2)(M^2_{
m eff}-q_2^2)}$$

g_{eff} is around 10%, i.e. comfortably small (fitted to F_{π⁰γ*γ*}(0,0))
 M_{eff} is around (1.5–2) GeV, i.e. in reasonable range


Singly-virtual pion transition form factor

 $M_{\rm eff}$ is determined by fit to singly-virtual pion TFF

M. Hoferichter, B.-L. Hoid, B. Kubis, S.L., S. P. Schneider, Phys. Rev. Lett. 121, 112002 (2018) and JHEP 1810, 141 (2018)

Sketch of pion transition form factor

M. Hoferichter, B.-L. Hoid, B. Kubis, S.L., S. P. Schneider, Phys. Rev. Lett. 121, 112002 (2018) and JHEP 1810, 141 (2018)

g - 2 of the muon

Final result and discussion of uncertainties

pion-pole part of hadronic light-by-light contribution to $a_{\mu} = (g - 2)/2$:

$$\begin{array}{lll} \mathfrak{g}_{\mu}^{\pi^{0}\text{-pole}} &=& 62.6(1.7)_{\mathcal{F}_{\pi\gamma\gamma}}(1.1)_{\text{disp}}\binom{2.2}{1.4}_{\text{BL}}(0.5)_{\text{asym}} \times 10^{-11} \\ &=& (62.6^{+3.0}_{-2.5}) \times 10^{-11} \end{array}$$

with uncertainties from

- decay width $\pi^0 \rightarrow 2\gamma$ (" $F_{\pi\gamma\gamma}$ ")
- pion vector form factor, pion phase shift, fit to $e^+e^- \rightarrow 3\pi$, range of low-energy representation, ... ("disp")
- fit to singly-virtual pion TFF (Brodsky-Lepage, "BL")
- onset of asymptotic region ("asym")
- \hookrightarrow dominant uncertainties can be reduced by improved data on $F_{\pi^{0}\gamma^{*}\gamma^{*}}(0,0)$ (PrimEx-II) and $F_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q^{2},0)$ (Belle II)

Summary and Outlook

- traces of physics beyond the standard model might be found in low-energy observables by contrasting
 - high-precision measurements
 - high-precision standard-model calculation
- \hookrightarrow promising observable: magnetic moment of the muon
- \hookrightarrow at present: $> 3\sigma$ deviation
- \hookrightarrow experiments will improve accuracy ($\delta a_{\mu} \times 10^{11} \approx 63 \rightarrow 16$)
- \hookrightarrow calls for improvement of standard-model calculation
 - previously: hadronic light-by-light contribution to $a_{\mu} = (g-2)/2$

 $a_{\mu}^{
m complete\,HLbL} = (116\pm 39) imes 10^{-11} ~~({
m model ~dependent!})$

Summary and Outlook

- have presented data driven approach (dispersive method) for hadronic light-by-light contribution to $a_{\mu} = (g 2)/2$
- \hookrightarrow achievement: model independent determination of pion-pole part with small uncertainty

$$a_{\mu}^{
m HLbL, pion\, pole} = \left(62.6^{+3.0}_{-2.5}
ight) imes 10^{-11}$$

 note: this is not the complete HLbL contribution, but its largest fraction

Summary and Outlook

complementary activities within data-driven approach:

• pion box

$$a_{\mu}^{
m HLbL, pion\,box} = (-15.9\pm0.2) imes10^{-11}$$

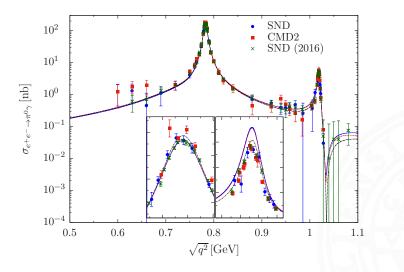
Colangelo, Hoferichter, Procura, Stoffer, Phys. Rev. Lett. 118, 232001 (2017)

- rest of two-pion contribution (includes "f₀- and f₂-pole contributions")
- \hookrightarrow work in progress (Colangelo, Hoferichter, Procura, Stoffer)
 - η and η' -pole contributions
- ↔ work in progress (Hanhart, Kubis, Kupsc, Wirzba, ...)

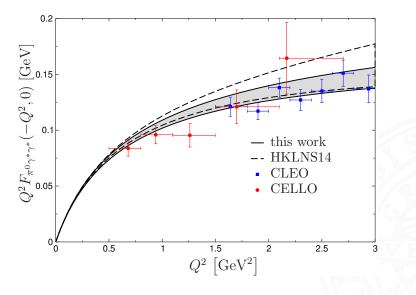
prospects: will finally beat previous result in accuracy

Collaborators, publications

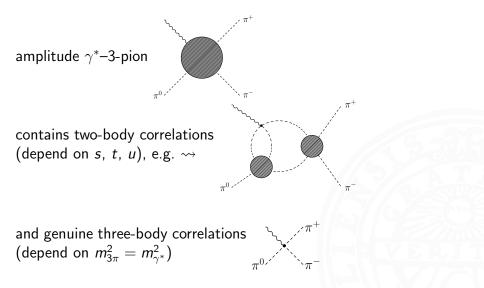
- Martin Hoferichter (Seattle)
- Bai-Long Hoid (Bonn)
- Bastian Kubis (Bonn)
- Franz Niecknig (Bonn, now industry)
- Sebastian Schneider (Bonn, now industry)

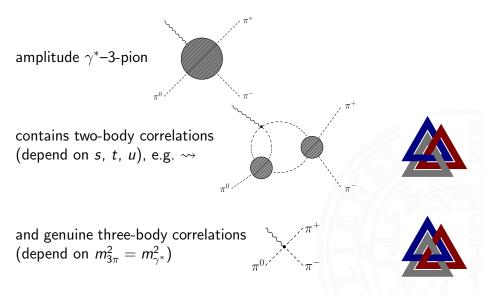

Hoferichter, Hoid, Kubis, Leupold, Schneider, Phys. Rev. Lett. 121, 112002 (2018) Hoferichter, Hoid, Kubis, Leupold, Schneider, JHEP 1810, 141 (2018) Leupold, Hoferichter, Kubis, Niecknig, Schneider, EPJ Web Conf. 166, 00013 (2018) Hoferichter, Kubis, Leupold, Niecknig, Schneider, Eur. Phys. J. C 74, 3180 (2014)

related previous work of the Bonn group:


F. Niecknig, B. Kubis and S. P. Schneider, Eur. Phys. J. C 72, 2014 (2012)
S. P. Schneider, B. Kubis and F. Niecknig, Phys. Rev. D 86, 054013 (2012)
M. Hoferichter, B. Kubis and D. Sakkas, Phys. Rev. D 86, 116009 (2012)

backup slides


Postdictions and predictions


Postdictions and predictions

Dispersive reconstruction II

Dispersive reconstruction II

