- HADRON PHYSICS -

LECTURE ON SELECTED TOPICS OF THE CONFERENCE

Harald Merkel Johannes Gutenberg-Universität Mainz

57thInternational Winter Meeting on Nuclear Physics Bormio, January 20th, 2019

- \bullet From Hadrons to QCD \rightarrow brief motivation of the fundamental theory
 - \blacktriangleright Quarks as building blocks \rightarrow QCD Lagrangian
- \bullet From QCD to Hadrons \rightarrow deriving expectations from QCD Lagrangian
 - \blacktriangleright e.g. Symmetries of QCD \rightarrow potential models, Effective theories, Lattice
- Determination of Hadron properties
 - ▶ Methods: e^+e^- Annihilation, γ +Baryon, Hadron-Hadron Collisions, Electron Scattering
 - Additional Action (Additional Action Action)
 Maxe-Function (Form-Factor, Polarizabilities, ...)
- Compare experiments with expectations: Exotics, ...

The Standard Model of Elementary Particles

Quark Model

Introduced 1964 by Gell-Mann/Zweig to clean up "particle zoo"

Mesons as Quark-Antiquark Pair:

Pions:

$$\begin{array}{c|c} \pi^{+} & \pi^{0} & \pi^{-} & \eta_{1} \\ \hline |u\overline{d}\rangle & \frac{1}{\sqrt{2}} \left(|u\overline{u}\rangle - |d\overline{d}\rangle \right) & |d\overline{u}\rangle & \frac{1}{\sqrt{2}} \left(|u\overline{u}\rangle + |d\overline{d}\rangle \right) \end{array}$$

Kaons:

... 6 flavours \rightarrow 36 Mesons?

Baryons

Baryons as three quark states

Examples:

. . .

p:	$ u\uparrow u\downarrow d\uparrow\rangle$
n:	$ u\uparrow d\downarrow d\uparrow angle$
$\Delta(1232):$	$ u\uparrow u\uparrow d\uparrow\rangle$
Λ:	$ u\uparrow d\downarrow s\uparrow\rangle$

Ground states are OK, excited states?

Problem: Δ^{++} with angular momentum $J = \frac{3}{2}$: $\Delta^{++} = \underbrace{|uuu\rangle}_{\text{flavour}} \cdot \underbrace{|\uparrow\uparrow\uparrow\rangle}_{\text{spin}} \cdot \underbrace{|l=0\rangle}_{\text{orbital }l}$

- ullet Not possible for Fermions ightarrow additional antisymmetric charge neccessary
- Not visible for three- and two-quark states

Color Analogy:

Three colors: Primary Colors

Two Colors: Color – complementary Color

Physical objects are colorless (*i.e.* SU(3) Color-Singulets):

Baryons: red-green-blue tripletts $|qqq\rangle = \sqrt{\frac{1}{6}}(|RGB\rangle - |RBG\rangle + |BRG\rangle - |BGR\rangle + |GBR\rangle - |GRB\rangle)$ Mesons: color-anti-color pairs

Alesons: color-anti-color pairs $|q\overline{q}\rangle = |\overline{RR}\rangle + |G\overline{G}\rangle + |\overline{BB}\rangle$

\Rightarrow *SU*(3) Symmetry of Gluons

Lagrangian field theory:

$$L = T - V \quad \text{and} \quad \text{Lagrange's Equation} \quad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0$$

or with continuous field $\phi(x_\mu) \quad \frac{\partial}{\partial x_\mu} \left(\frac{\partial L}{\partial (\partial \phi / \partial x_\mu)} \right) - \frac{\partial L}{\partial \phi} = 0$

Only two ingredients for \mathcal{L}_{QCD} :

• Quarks are massive spin $\frac{1}{2}$ particles \Rightarrow Dirac equation for free lagrangian

$$\mathcal{L}_0 = \overline{q}_j (i \gamma^\mu \partial_\mu - m) q_j$$

• Gauge invariant under
$$SU(3)$$
 color symmetry *i.e.* invariant under local phase rotation: $q(x) \rightarrow e^{i\alpha_a(x)T_a}q(x)$ with eight 3×3 matrices T_a

$$\mathcal{L}_{QCD} = \overline{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\overline{q}\gamma^{\mu}T_{a}q)G_{\mu}^{a} - \frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu}$$
with 8 massless vector gauge fields transforming like
$$G_{\mu}^{a} \rightarrow G_{\mu}^{a} - \frac{1}{g}\partial_{\mu}\alpha_{a} - f_{abc}\alpha_{b}G_{\mu}^{c}$$
gauge field strength tensor
$$G_{\mu\nu}^{a} = \partial_{\mu}G_{\nu}^{a} - \partial_{\nu}G_{\mu}^{a} - gf_{abc}G_{\mu}^{b}G_{\nu}^{c}$$

$$SU(3) \text{ structure constants given by} \quad [T_{a}, T_{b}] = if_{abc}T_{c} \qquad \Rightarrow \text{ ``non abelian''}$$

- Quark loops like lepton loops in QED
- For each flavour, large mass supressed
- Additional:
 - ► Gluon Loops
 - ► Large contribution: 8 gluons
 - ► opposite sign!

Strong Coupling Constant

 \Rightarrow running of $\alpha_s \Rightarrow$ non-abelian structure of QCD!

Possible Quark States

- Not only $q\overline{q}$ and qqq states \Rightarrow a new zoo of "Exotics" is expected!
- Important for most of them: "Color-Singulet" does not mean "white"! Two singulets are always decoupled \rightarrow non-trivial binding (e.g. "white" exchange) neccessary

$$e^-
ightarrow$$
 Hadrons, with over all $J^{PC} = 1^{--}$

e^+e^- Annihilation: general features

Idea: Relate $q\overline{q}$ cross section to known (i.e. QED) cross section (μ to be distinguishable from e):

 $\mu^+\mu^-$ cross section from QED:

$$\sigma(e^+e^- \to \mu^+\mu^-) = \frac{4\pi\alpha^2}{3s}$$

 $q\overline{q}$ cross section (also only QED!):

$$\begin{aligned} \sigma(e^+e^- \to q\overline{q}) &= N_c e_q^2 \ \sigma(e^+e^- \to \mu^+\mu^-) \\ \text{with} \quad e_q &= \begin{cases} -\frac{1}{3} & \text{for } q = d, s, b \\ +\frac{2}{3} & u, c, t \end{cases} \end{aligned}$$

and $N_c = 3$ number of colors.

$$R = \frac{\sigma(e^+e^- \to \text{Hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = \sum_q 3e_q^2$$

- with QCD corrections: $R = \sum_q 3e_q^2(1 + \frac{\alpha_s(Q^2)}{\pi})$
- confirms quark charge
- confirms (again) $N_c = 3$ colors

$$R = \sum_{q} 3e_{q}^{2} = 3\left(\left(\frac{2}{3}\right)^{2} + \left(-\frac{1}{3}\right)^{2} + \left(-\frac{1}{3}\right)^{2} + \left(\frac{2}{3}\right)^{2}\right) = \frac{10}{3}$$

$$R = \sum_{q} 3e_{q}^{2} = 3\left(\left(\frac{2}{3}\right)^{2} + \left(-\frac{1}{3}\right)^{2} + \left(-\frac{1}{3}\right)^{2} + \left(-\frac{1}{3}\right)^{2} + \left(-\frac{1}{3}\right)^{2}\right) = \frac{11}{3}$$

Consequences from QCD for Hadron Properties

*L*_{QCD} is invariant under parity transformation (*i.e.* point reflection)

 $\hat{P}: (t, \vec{x}) \to (t, -\vec{x})$

Eigenvalues:

$$\hat{P}^2(\phi(t,\vec{x})) = \hat{P}(\hat{P}(\phi(t,\vec{x})) = \hat{P}(\phi(t,-\vec{x})) = \phi(t,\vec{x})$$

 $\Rightarrow \hat{P}(\phi(t,\vec{x}) = P\phi(t,\vec{x}) \text{ with Eigenvalues } P = \pm 1 \text{ (actually } \pm e^{i\phi}\text{, but we can redefine } \hat{P}\text{)}$

Consequences for Hadrons:

- All states can be decomposed into states with P = +1 or P = -1
 - ► Might be degenerated?
- System of Hadrons

 $\hat{P}(\phi_1(t,\vec{x})\otimes\phi_2(t,\vec{x})\otimes\cdots\otimes\phi_N(t,\vec{x}))=P_1(\phi_1(t,\vec{x}))\times P_2(\phi_2(t,\vec{x}))\times\cdots\times P_N(\phi_N(t,\vec{x}))$

Parity is a "multiplicative" quantum number

- Hadrons produced via QED/QCD from a state with defined total parity have same total parity
- Additional U(1) Symmetries for Baryon-Number, Charge, Lepton Number \Rightarrow combined parity operators
- Define intrinsic parity $P_{\text{Proton}} = P_{\text{Neutron}} = P_{\text{Electron}} = +1$:

Example: Parity of the pion

$$^{2}H + \pi^{-} \rightarrow n + n$$

- measure angular momentum (i.e. angular distribution)
- intrinsic parity P(p) = P(n) = 1
- Deuteron has Spin $S_d = 1$ Pion has Spin $S_{\pi} = 0$ s-Wave L = 0n antisymmetric $\end{pmatrix}$ \Rightarrow total orbital momentum of final state $L = 1 \Rightarrow P = (-1)^L$

Sum

$$\underbrace{(1)}_{p\uparrow} \underbrace{(1)}_{n\uparrow} \underbrace{(P_{\pi})}_{\text{Pion}} = \underbrace{(-1)}_{L=1} \underbrace{(1)}_{n\uparrow} \underbrace{(1)}_{n\uparrow}$$

 \Rightarrow Pion has parity $P_{\pi} = -1$, it is a "pseudoscalar" particle

General approach:

- calculate parity of initial state
- examine strong and electromagnetic (not weak!!!) decays, determine angular momenta
- tie to defined intrinsic parity

Symmetries of the QCD Lagrangian: Charge Conjugation

 \mathcal{L}_{QCD} is invariant under Charge Conjugation (*i.e.* exchange particle \rightarrow antiparticle)

$$\hat{C}: |\phi\rangle \rightarrow |\overline{\phi}\rangle$$

Same properies as a parity operator

- Eigenvalues $C = \pm 1$
- Multiplicative quantum number for a system
- New: only neutral particles can be eigenstates!

Experimental determination: e.g. C-Parity of the pion from decay:

 $\pi^0 \,{\rightarrow}\, \gamma {+}\, \gamma$

- C-Parity of photon $C(\gamma) = -1$ from QED
- Multiplicative $\Rightarrow C(\pi^0) = (-1)_{\gamma}(-1)_{\gamma} = 1$

Quantum numbers of the Pion: $J^{PC} = 0^{-+}$

- "Natural" quantum numbers for mesons: J^{PC} with $|L S| \le J \le |L + S|$ $\hat{P}(R(r)Y_{lm}(\theta, \phi)) = Y_{lm}(\pi - \theta, \phi + \pi) = (-1)^{l}Y_{lm}(\theta, \phi) \implies \hat{P}|q\overline{q}\rangle = (-1)^{L+1}|q\overline{q}\rangle$
- Charge Parity of a Meson as a Quark-Antiquark pair:

$$\hat{C}(|q\overline{q}\rangle) = C|q\overline{q}\rangle$$

- Charge Conjugation corresponds to exchange of quark/antiquark
- ► L = 0, 2, 4, ... symmetric, L = 1, 3, 5, ... antisymmetric $\Rightarrow C \sim (-1)^L$
- ▶ Spin $\Rightarrow C \sim (-1)^{S+1}$
- ▶ Exchange particle \rightarrow antiparticle \Rightarrow $C \sim (-1)$

$$\hat{C}(|q\overline{q}\rangle) = (-1)^{L}(-1)^{S+1}(-1)|q\overline{q}\rangle = (-1)^{L+S}|q\overline{q}\rangle$$

• Allowed: $0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 1^{++}, 2^{--}, 2^{-+}, 2^{++}, 3^{--}, 3^{+-}, 3^{++}, \dots$ Not allowed: $0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots \implies$ Exotic Mesons

$^{2S+1}L_J$	S	L	J	Ρ	С	J^{PC}	Mesons				Name
${}^{1}S_{0}$	0	0	0	_	+	0^{-+}	π	η	η^{\prime}	K	pseudo-scalar
${}^{3}S_{1}$	1	0	0	—	_	1	ρ	ω	ø	K^*	vector
${}^{1}P_{1}$	0	1	1	+	_	1^{+-}	b_1	h_1	h'_1	K_1	pseudo-vector
${}^{3}P_{0}$	1	1	0	+	+	0^{++}	a_0	f_0	f'_0	K_0^*	scalar
${}^{3}P_{1}$	1	1	1	+	+	1++	a_1	f_1	f'_1	K_1	axial vector
${}^{3}P_{2}$	1	1	2	+	+	2++	a_2	f_2	f'_2	K_2^*	tensor

Theoretical Approaches

Starting point: Feynman's Path Integral formulation of Quantum Mechanics:

$$\begin{split} \psi(x_2,t_2) &= \frac{1}{Z} \int e^{iS} \psi(x_1,t_1) \ \mathcal{D}x \\ \text{with} \qquad \int \mathcal{D}x : \text{Integration over } \textit{all paths } x(t) \text{ with } x(0) = x_1 \\ \text{and the action} \qquad S &= \int_{t_1}^{t_2} L(x,\dot{x},t) \ \text{d}t \end{split}$$

(a.k.a. Fermat's principle, Hamilton's principle, principle of least action)

• Transform to Euclidean Space (neccessary to use Monte-Carlo-Methods):

$$t \rightarrow i\tau$$

-(dt²) + dx² + dy² + dz² \rightarrow d\tau² + dx² + dy² + dz²

• Define Link Variables for gluonic field

$$U_{\mu} = \exp\left(iaG_{\mu}\left(n + \frac{\hat{\mu}}{2}\right)\right)$$

 $U_{\mu\nu}(n)$: closed loop around one tile, "plaquette"

• Fermion action bei discretizing derivatives $\partial \phi_t \approx \frac{\phi(t+a) - \phi(t-a)}{2a}$

$$S = \int \overline{u} (iD_{\mu}\gamma_{\mu} + m)u d^{4}x \qquad \rightarrow \qquad D_{\mu} = \frac{1}{2a} \left[U_{\mu}(x)q(x + a\hat{\mu}) - U_{\mu}(x - a\hat{\mu})^{\dagger}q(x - a\hat{\mu}) \right]$$

• Gluonic action:

$$S = -\frac{1}{2g^2} \operatorname{Tr} \int G_{\mu\nu} G^{\mu\nu} d^4 x \qquad \to \qquad S_L = -\frac{1}{2g^2} \sum a^4 \operatorname{Tr} \left(1 - U_{\mu\nu}(n)\right)$$

Lattice

Final Step: Numeric solution via Markov-chain Monte-Carlo:

- Choose a start-configuration C_0
- Accept a random next configuration C_{n+1} with probability

$$P = \min\left(1, \frac{W(C_{n+1})}{W(C_n)}\right)$$

- $\Rightarrow \mbox{We don't need to know the probability density function,} \\ \mbox{we need only the } relative \mbox{weight } W(C), \\ \mbox{calculated by discretized path integral!} \\ \end{cases}$
- Repeat until "thermalization", i.e. distribution of configurations corresponds to W(C)
- Repeat everything with different Lattice spacing a
- Extrapolation $a \rightarrow 0$

Summary:

- Gauge invariant
- Works in the non-perturbative regime
- Finite volume, finite momentum

S. Durr, et al., Science 322 (2008)

Still one symmetry of QCD not used...

Helicity: Spin projection in direction of motion

Not a good quantum number: inversion by "overtaking" reference frame!

Better: Chirality

1

$$\gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

For massless particles:

$$\gamma^{5} \cdot u_{+} = \gamma^{5} \cdot \begin{pmatrix} \chi \\ \frac{\vec{\sigma} \cdot \vec{p}}{E+m} \end{pmatrix} = \gamma^{5} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = +u_{+} \quad \text{and} \quad \gamma^{5} \cdot u_{-} = \gamma^{5} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} = -u_{-}$$

Eigenvalues of γ^5 are the eigenvalues of helicity for particles with m o 0

Chirality \approx Lorentz invariant version of Helicity

Projection Operator

$$\frac{1}{2}(1+\gamma^5)u = u_R$$
 $\frac{1}{2}(1-\gamma^5)u = u_L$

Consequences for *Dirac Equation* $(i\gamma^{\mu}p_{\mu} - m)u = 0$:

$$\overline{u}\gamma^{\mu}u = (\overline{u}_R + \overline{u}_L)\gamma^{\mu}(u_R + u_L) = \overline{u}_R\gamma^{\mu}u_R + \overline{u}_L\gamma^{\mu}u_L$$

for $m \rightarrow 0$: left-/right-handed particles interact only with left-/right-handed particles

Def.: Chiral Symmetry: invariant under separate rotations

$$\psi_L \to e^{\Theta_L} \psi_L$$
 and $\psi_R \to \psi_R$
or $\psi_R \to e^{\Theta_R} \psi_R$ and $\psi_L \to \psi_L$

Chiral Symmetry in QCD: combination with Isospin rotation of $q = \begin{pmatrix} u \\ d \end{pmatrix}$: $U(2)_L \times U(2)_R = \underbrace{SU(2)_L \times SU(2)_R}_{\text{Chiral Symmetry}} \underbrace{\times U(1)_V \times U(1)_A}_{\text{Baryon number, Quan. anomaly}}$

Chiral Symmetry: QCD invariant under separate isospin rotation for left- and right-handed quarks in the limit of massless quarks

Expectations from Chiral Symmetry for Hadron Physics

Mass of light quarks:

 $m_u = 2.2 \,\mathrm{MeV}$ $m_d = 4.7 \,\mathrm{MeV}$

 $m_q \ll m_{\text{Hadrons}}$

Chiral symmetry $SU(2)_R \times SU(2)_L$ should be conserved at least at 1% level!

Expectations:

• Parity doublets: all light quark states have partner with oposite parity

Observation:

- No parity doubletts in baryon or meson spectrum seen! e.g. $\rho(770) < a_1(1200)$
- Three ridiculous light mesons π^0 , π^+ , π^- with $m_{\pi} \ll \frac{2}{3}m_p$

Hypothesis:

- Chiral Symmetry is spontaneously broken
- $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V \times SU(2)_A$

of standard vector $SU(2)_V$ and rest (... $SU(2)_A$ is not quite axial vector)

Spontaneous Symmetry Breaking and Goldstone-Theoreme

2-dimensional Example:

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - \frac{1}{2} m^2 \phi^* \phi - \frac{\lambda}{4} (\phi^* \phi)^2$$

Minimum at

$$|\phi| = k = \sqrt{-m^2/\lambda}$$

Replace complex scalar field $\phi = k e^{i\theta/k}, \quad \theta \in \mathbb{R}$

$$\Rightarrow \mathcal{L} = \frac{1}{2} (-ie^{-i\theta/k} \partial^{\mu} \theta) (ie^{i\theta/k} \partial_{\mu} \theta) - \frac{1}{2} m^2 k^2 - \frac{\lambda}{4} k^4 = \frac{1}{2} \partial^{\mu} \theta \partial_{\mu} \theta - \underbrace{\frac{1}{2} m^2 k^2 - \frac{\lambda}{4} k^4}_{\text{const. in } \theta}$$

 \Rightarrow Real scalar field θ ist massless!

Spontaneous Symmetry Breaking \Rightarrow massless Goldstone-Bosons. \Rightarrow QCD: Pions

What are the relevant degrees of freedom? \Rightarrow *e.g.* pions as Goldstone-Bosons

Ingredients for an effective field theory:

- Choose degrees of freedom: \Rightarrow Pions
- Most general Lagrangian in theses DoF respecting the Symmetries of \mathcal{L}_{QCD}
 - \Rightarrow series in terms of derivatives, fields
 - \Rightarrow this is a perturbative theory!
- Most important: sort these terms!
 - > Expansion in mass terms (explicit symmetry breaking by $-\overline{q}_f M q_f$)
 - \blacktriangleright Simultaneously expansion in *p*
 - \blacktriangleright Order Scheme \rightarrow define what is LO, NLO, NNLO!
- Derive Feynman rules, calculate observables order by order, ...

To deal with:

- Regularization \Rightarrow Low Energy Constants Fit to experiment, limits predictive power
- Degrees of freedom: e.g. better to include resonances?
- Convergence of series
- ...

Systematic expansion, not a Model!

If a theorist uses the word

"chiral"

like e.g. in "Chiral Extrapolation of Lattice QCD" this usually means

"Using methodes from Effective Field Theories using the Chiral Symmetry of QCD"

Potential Models

- Idea: heavy quarks \rightarrow non-relativistic
- A quark in the potential of a mean field
Model: quarks in the potential of the rest of the meson/baryon

• $V(r \rightarrow 0)$

- ► Asymptotic freedom
- ► Massless gluons
 - \rightarrow infinite range Coulomb like potential $\frac{1}{r}$

• $V(r \rightarrow \infty)$

- ► Confinement potential $k \cdot r$
- Running coupling constant

$$V(\vec{r}) = -\frac{4}{3}\frac{\alpha_s}{r} + k \cdot r$$

Simple Model: Non-relativistic Potential Model

Non-relativistic $q\overline{q}$ potential:

$$V(\vec{r}) = -\frac{4}{3}\frac{\alpha_s}{r} + k \cdot r$$

Running Coupling constant:

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - n_f)\log\left(\frac{Q^2}{\Lambda^2}\right)}$$

 n_f : number of flavours $\Lambda \approx 0.2 \,\text{GeV}$: QCD Scale parameter $k \approx 1 \, \frac{\text{GeV}}{\text{fm}}$: QCD String constant

Quenched approximation, *i.e.* no disconnected quark loops

G. S. Bali et al., PRD62 (2000)

Neccessary extensions of potential model:

• Spin-Orbit (fine structure)

$$V_{LS} = \frac{1}{2m_c^2 r} (\vec{L} \cdot \vec{S}) \left(3 \frac{\mathrm{d}V_V}{\mathrm{d}r} - \frac{\mathrm{d}V_V}{\mathrm{d}r} \right)$$

• Spin-Spin (hyperfine structure)

$$V_{SS} = \frac{2}{3m_c^2 r} (\vec{S}_1 \cdot \vec{S}_2) \nabla^2 V_V(r)$$

• Tensor force

$$V_T = \frac{2}{12m_c^2} (3(\vec{S} \cdot \hat{r})(\vec{S} \cdot \hat{r}) - S^2) \left(\frac{1}{r} \frac{\mathrm{d}V_V}{\mathrm{d}r} - \frac{\mathrm{d}^2 V_V}{\mathrm{d}r^2}\right)$$

with V_V , V_S vector and scalar part of the previous potential

Finding Hadrons \Rightarrow Just looking for Bumps?

- Breit-Wigner Amplitude (complex mass in Dirac-propagator)

$$BW(m) = \frac{\Gamma_0/2}{m_0 - m - i\Gamma_0/2}$$

valid for $\Gamma_0 \ll m_0$ $m_0 \gg$ Threshold Energy

• Better (relativistic, orbital momentum, phase space included):

$$BW(m) = \frac{m_0 \Gamma(m)}{m_0^2 - m^2 - im_0 \Gamma(m)}$$

with

$$\Gamma(m) = \Gamma_0 \frac{m_0}{m} \frac{p}{p_0} \frac{F_l^2(p)}{F_l^2(p_0)}$$

. . .

angular momentum barrier: $F_0(p) = 1$

$$F_1(p) = \sqrt{2z/(z+1)} \quad \text{with } z = (p/p_R)^2$$
$$F_2(p) = \sqrt{13z^2/((z-3)^2 + 9z)}$$

Example $\rho(770)$

Argand-Diagramm:

no clean Breit-Wigner $\rightarrow \rho - \omega$ interference at the position of the ω mass \rightarrow amplitude and phase changed

 \Rightarrow all open channels have to be considered on complex amplitude level!

Simplest Example: proton around the pion production threshold three open channels: $\gamma + p$, $n + \pi^+$, $p + \pi^0$

• Scattering matrix (S-Matrix) of complex transition amplitudes:

$$egin{pmatrix} p+\gamma\ n+\pi^+\ p+\pi^0 \end{pmatrix}_{ ext{final}} = egin{pmatrix} A_{\gamma\gamma} & A_{\gamma\pi} & A_{\gamma\pi} & A_{\gamma\pi} \ A_{\gamma\pi} & A_{\pi\pi} & A_{\pi^+\pi^0} \ A_{\gamma\pi} & A_{\pi^+\pi^0} & A_{\pi\pi} \end{pmatrix} \cdot egin{pmatrix} p+\gamma\ n+\pi^+\ p+\pi^0 \end{pmatrix}_{ ext{initial}}$$

- All channels are seen in all other channels
- $\gamma + p \rightarrow p + \pi^0$, *s*-wave:

Compton-Scattering

Polarizabilities in Compton Scattering (partial waves):

Quantum-mechanics: An absolute phase is not measureable!

But:

• Elastic scattering: optical Theorem

$$\mathbf{\sigma} = \frac{4\pi}{k} \operatorname{Im} \left\{ f(\mathbf{\theta} = \mathbf{0}) \right\}$$

- Elastic phase is a transition phase
- Direct measureable at forward direction ($\theta = 0$) in

$$egin{aligned} & \gamma+p o \gamma+p \ & \pi^++n o \pi^++n \ & \pi^0+p o \pi^0+p \end{aligned}$$
 (not measured yet...)

- Unitarity of S-matrix fixes phase of *all scattering amplitudes*
 - \Rightarrow Scattering amplitudes have relative phases (inital state \rightarrow final state)!
 - \Rightarrow Production amplitudes are also **Observables** (but in reality hard to determine absolute)

The Art of Partial Wave Analysis

- Limited significance of single channels (even if this presentation is "standard" in talks...)
- All open channels have to be fitted simultanously
- Separate for every angular momentum (Partial Wave)
- Fit on Amplitude level (not cross section!)
- Polarization degrees of freedom
- Resonances: Breit-Wigner width (line shape, pole position), mass
- Background contributions
- Combinatorical background

Hundreds of parameters, most determined with limited significance

...choose wisely

^{• ...}

I only believe in peaks seen

in several channels
 by different groups,
 measured with different apparatus,
 with different analysis

and still I have doubts...

Heavy Quark Mesons

- Simultanious discovery 1974 in BNL and SLAC
- First evidence of a new quark: charm
- Confirmation of quark model (*c* missing partner of *s*)
- Bound state of $c\overline{c}$ quarks
- \Rightarrow new era of heavy quark physics

Below open charm threshold:

 \Rightarrow electro-magnetic decay of same order of magnitude as strong decay

 $\Rightarrow J/\psi$ is a very small resonance

Above open charm threshold:

 \Rightarrow broad resonances

Heavy Quarks:

$$m_c = 1.3 \,\text{GeV}$$
 $m_b = 4.2 \,\text{GeV}$ $m_t = 170 \,\text{GeV}$

• Heavy Quark Systems are *non-relativistic*:

$$m_{J/\Psi} = 3.1 \,\text{GeV} = 2 \times m_c + 2 \times 0.25 \,\text{GeV}$$

 $\Rightarrow \qquad \beta = \frac{p}{E} \approx \frac{0.25 \,\text{GeV}}{1.3 \,\text{GeV}} = 0.2$

• The mass scale is *perturbative*:

 $m_Q \gg \Lambda_{QCD}$

Potential model for description well suited

non-perturbativ - transition - perturbative regime

Positronium as Model for Quarkonium (Charmonium or Bottomonium)

Positronium

Charmonium

Production channels

• Weak decay

- Double Charmonium - $J/\psi + c\overline{c}$
- Two-photon production -C = +1

b

e⁻

 e^{1}

BES III

Belle

- $p\overline{p}$ annihilation
 - 2 gluons: 0^{-+} , 0^{++} , 2^{++}
 - 3 gluons: 1⁻⁻, 1⁻⁺

Discovered Charmonium States:

- Solution of non rel.
 Schrödinger-Equation
- Notation:

0^{-+}	1	1^{+-}	J^{++}
η_c	ψ	h_c	X 1,2,3

8 States well established

• Hyperfine splitting to adjust spin dependent potential *V*_{SS}

 $\Delta m_{hf}(1S) = m(J/\Psi) - m(\eta_c)$ = 116 MeV

- Look for
 - Missing States
 - Additional States

Charmonium Spectrum

Belle (2013): A new state, not quite fitting into spectrum:

 $M(\pi^+\pi^-J/\psi)$ (MeV/c²)

Discovery channel:

$$e^+e^-
ightarrow \Upsilon(4S)
ightarrow B^+B^- B^+
ightarrow K^+ \underbrace{\pi^+\pi^- J/\psi}_{
m subsystem}$$

- Decay to J/ψ : $c\overline{c}$ content neccessary
- \bullet Isospin: Decay via $\rho \to \pi^+\pi^-$ or $\omega \to \pi^+\pi^-$
- $\bullet~\rho$ decay is isospin violating \rightarrow suppressed
- Both channels are of same order
- \Rightarrow additional *u* and *d* content?

- Resonance confirmed by BaBar, BES, CDF, D0, LHCb, ...
- LHCb: Quantum Numbers $J^{PC} = 1^{++}$, I = 0 (these are not exotic!)

- \bullet Two Pion distribution described by Breit-Wigner with known $\rho(770)$ width
- Violates Isospin conservation \Rightarrow at least two gluons
- \bullet Should be suppressed compared to decay via $\omega \to \pi^+\pi^-\pi^0$

X(3872) Properties

- Mass is very close to open charm threshold $\overline{D}_0 D_0 *$
- \bullet Width is very narrow $< 1.2\,{\rm MeV}$
- small binding \Rightarrow huge separation
- \bullet Decays to $\rho J/\psi$
- \bullet Decays to $\omega J/\psi$
- Decays dominant to $\overline{D}_0 D_0 *$

Interpretation:

- Exotic nature? Probably...
- Many interpretations on the market
- Loosely bound $\overline{D}_0 D_0 *$ molecule?

BaBar (2005) via Initial State Radiation

 $e^+ \, e^- \,
ightarrow \, \gamma_{ISR} \, \pi^+ \, \pi^- \, J/\psi$

- Quantum numbers are now $J^{PC} = 1^{--}$
- Confirmed by CLEAO, CLEOIII, Belle, BESIII
- Weak coupling consistent with hybrid meson

BES III (2013)

 $e^+e^-
ightarrow \pi^- \underbrace{\pi^+ J/\psi}_{ ext{subsystem}}$

• Decay to J/ψ : $\Rightarrow c\overline{c}$ content neccessary

Charged!!!!!!

 \Rightarrow at least $c\overline{c}u\overline{d}$

Status:

- Confirmed by several experiments
- Several states
- also Z_b^+ states seen
- PDG 2018 naming scheme:

Xnow χ Isospin 0Ynow ψ ZZIsospin 1

Particle Data Group (2018): States near open $c\overline{c}$ or $b\overline{b}$ threshold

PDG Name	Former/Common Name(s)	m (MeV)	Γ (MeV)	$I^G(J^{PC})$	Production	Decay	Discovery Year	Summary Table
$\chi_{c1}(3872)$	X(3872)	3871.69 ± 0.17	< 1.2	0+(1++)	$B \to KX$ $p\bar{p} \to X$ $pp \to X$ $e^+e^- \to \gamma X$	$\pi^{+}\pi^{-}J/\psi$ $3\pi J/\psi$ $D^{*0}\overline{D}^{0}$ $\gamma J/\psi$ (220)	2003	YES
$Z_c(3900)$		3886.6 ± 2.4	28.2 ± 2.6	$1^+(1^{+-})$	$\psi(4260) \rightarrow \pi^- X$ $\psi(4260) \rightarrow \pi^0 X$	$\gamma\psi(2S)$ $\pi^{+}J/\psi$ $\pi^{0}J/\psi$ $(D\bar{D}^{*})^{+}$ $(D\bar{D}^{*})^{0}$	2013	YES
X(4020)	$Z_c(4020)$	4024.1 ± 1.9	13 ± 5	$1^+(?^{?-})$	$\psi(4260, 4360) \to \pi^{-} X$ $\psi(4260, 4360) \to \pi^{0} X$	$(DD^{-})^{+}h_{c}$ $\pi^{0}h_{c}$ $(D^{*}\bar{D}^{*})^{+}$ $(D^{*}\bar{D}^{*})^{0}$	2013	YES
$Z_b(10610)$		10607.2 ± 2.0	18.4 ± 2.4	$1^+(1^{+-})$	$\Upsilon(10860) \to \pi^- X$ $\Upsilon(10860) \to \pi^0 X$	$(D^{+}D^{+})^{+}$ $\pi^{+}\Upsilon(1S, 2S, 3S)$ $\pi^{0}\Upsilon(1S, 2S, 3S)$ $\pi^{+}h_{b}(1P, 2P)$ $(B\bar{B}^{*})^{+}$	2011	YES
$Z_b(10650)$		10652.2 ± 1.5	11.5 ± 2.2	$1^+(1^{+-})$	$\Upsilon(10860) \to \pi^- X$	$(\Sigma B^{+})^{\prime}$ $\pi^{+} \Upsilon(1S, 2S, 3S)$ $\pi^{+} h_{b}(1P, 2P)$ $(B^{*} \bar{B}^{*})^{+}$	2011	YES

...and ≈ 25 more unassigned states above threshold

Bottomonium

- higher *b*-quark mass
- lower coupling $lpha_{s}(Q^{2})$
- dominated by Coulomb term of the potential
- better description by potential models
- ground state $\eta_b(1S)$ discovered 2008

Pentaquark (LHCb 2015)

 $\Lambda_b^0 \to J/\psi + K^- + p$

Glueballs

- Mixing with scalar mesons $f_0(1370)$
- Candidates $f_0(1500), f_0(1710), \dots$
- No clear signature yet

Testing the wave-function: Form-Factors

Elastic Cross Section (Rosenbluth-Formula):

$$\frac{d\sigma}{d\Omega_e} = \left(\frac{d\sigma}{d\Omega_e}\right)_{\text{Mott}} \frac{1}{(1+\tau)} \left[G_E^2(Q^2) + \frac{\tau}{\varepsilon} G_M^2(Q^2) \right]$$

with
$$\tau = \frac{Q^2}{4m_p^2}$$

 $\epsilon = (1+2(1+\tau)\tan^2\frac{\theta_e}{2})^{-1}$

 $G_E(Q^2)$: Electric Form-Factor \rightarrow related to charge distribution $G_M(Q^2)$: Magnetic Form-Factor \rightarrow related to distribution of magnetic moments

Normalization:

$$G_E^p(Q^2 = 0) = 1$$

 $G_M^p(Q^2 = 0) = 2.79$

$$G_E^n(Q^2 = 0) = 0$$

 $G_M^n(Q^2 = 0) = -1.91$

Root-Mean-Square Radius:

$$\langle r_E^2 \rangle = -6 \left. \frac{d}{dQ^2} \left. \mathbf{G}_E(\mathbf{Q}^2) \right|_{Q^2 = 0}$$

$$\langle r_M^2 \rangle = -\frac{6}{\mu_p} \frac{d}{dQ^2} G_M(Q^2) \Big|_{Q^2=0}$$

Results of Rosenbluth separation:

Empirical dipole fit:

$$G_E^p(Q^2) = \frac{G_M^p(Q^2)}{2.79} = \frac{G_M^n(Q^2)}{-1.91} = G^{Dipole}(Q^2)$$
$$G_{Dipole}(Q^2) = \left(1 + \frac{Q^2}{0.71 GeV^2}\right)^{-2}$$

Polarization transfer reaction:

$$\vec{e} + n \rightarrow e + \vec{n}$$

Longitudinal and transverse polarization:

$$P_{l} = \frac{E + E'}{mI_{0}} \sqrt{\tau(1 + \tau)} G_{M}^{2} \tan^{2} \frac{\theta}{2}$$

$$P_{t} = -\frac{2}{I_{0}} \sqrt{\tau(1 + \tau)} G_{E} G_{M} \tan \frac{\theta}{2}$$

$$I_{0} = G_{E}^{2} + \tau \left[1 + 2(1 + \tau) \tan^{2} \frac{\theta}{2} \right] G_{M}^{2}$$

$$\Rightarrow \quad \frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{(E+E')}{2m} \tan \frac{\theta}{2}$$

- Signal proportional to $G_E(Q^2)$
- Systematic errors cancel out
- Requires measurement of recoil polarization

Rosenbluth vs. Polarization Transfer

Error propagation for Rosenbluth-separation (example: $\varepsilon = 0.2, 0.9$):

$$\frac{d\sigma}{d\Omega_e} = \left(\frac{d\sigma}{d\Omega_e}\right)_{\text{Mott}} \frac{1}{(1+\tau)} \left[\frac{G_E^2(\boldsymbol{Q}^2) + \frac{\tau}{\epsilon} G_M^2(\boldsymbol{Q}^2) \right]$$

• High Q^2 : $G_M^2 \approx 2.79^2 \times G_E^2$ G_E^2 suppressed by $\tau >> 1$

• Low Q^2 : G^2_M suppressed by $au = rac{Q^2}{4M^2} o 0$

- ▶ BUT: Recoil polarization difficult below $Q^2 \approx 0.2 \, {\rm GeV^2}/c^2$
- ▶ Utilize knowledge at $Q^2 = 0 \Rightarrow \mu G_E = G_M$

 $r_E = 0.879 \pm 0.005_{\text{stat.}} \pm 0.004_{\text{syst.}} \pm 0.002_{\text{model}} \pm 0.004_{\text{group}} \text{ fm},$ $r_M = 0.777 \pm 0.013_{\text{stat.}} \pm 0.009_{\text{syst.}} \pm 0.005_{\text{model}} \pm 0.002_{\text{group}} \text{ fm}.$

Jan C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010), Phys. Rev. C 90, 015206 (2014)

- $\frac{m_{\mu}}{m_e} \approx 200 \Rightarrow$ Muon spends more time at center
- Increased overlap wave-function with nucleus (at least *s*-wave...)
- Incresed sensitivity to charge distribution
- First order: electric radius of the proton

Radius of the Proton

- 5σ Discrepancy between atomic physics and electron scattering
- Situation still unclear
- Serious problem far beyond nuclear science: *e.g.* Rydberg Constant
- Trigger experimental program in atomic and nuclear physics

Models for Form-Factors

J. J. Kelly, Phys. Rev. C 66 (2002)

Non-Relativistic charge distribution:
 Fourier transform of form factor *F*(*k*)

$$F(k) = \int_0^\infty r^2 j_0(kr) \rho(r) dr$$

$$\rho(r) = \int_0^\infty k^2 j_0(kr) F(k) dr$$

with $k = |\vec{q}|$

Lorentz boost

$$k^2
ightarrow Q^2/(1+ au)$$

- Relativistic prescription (not unique) $F(k) = (1 + \tau)^2 G(Q^2)$
- Limit for k (position uncertainties!)

$$k_{max} = 2M$$

Nucleon Form-Factor in Lattice QCD

Charged Pion Form-Factor

Pion Form-Factor

 \Rightarrow "Vector Meson Dominance"

Vector Meson Dominance

Also the Proton Form-Factor can be described by mesons:

Space-like: \exists reference frame where virtual photon is emmitted and absorbed at the same time Time-like: \exists reference frame where virtual photon is emmitted and absorbed at the same position

NB: Blue line from 1974 (G. Höhler), data are much later!

Time-like Form-Factors

Cross section of $e^+e^- \rightarrow p\overline{p}$:

with Coulomb correction factor $C = \frac{1}{1 - e^{-y}}$ and $y = 2\pi \frac{\alpha m}{\beta \sqrt{q^2}}$

- Separation of $G_E(q^2)$ and $G_M(q^2)$ via angular structure
- $q^2 \rightarrow 4m^2$ at threshold:

$$G_E(4m^2) = G_M(4m^2)$$

• $q^2 \rightarrow \infty$ limits from perturbative QCD:

$$F_1(q^2) \sim \frac{\alpha^2(q^2)}{q^4} \qquad \qquad F_1(q^2) \sim \frac{\alpha^2(q^2)}{q^4} \qquad \qquad \left| \frac{G_M^n(q^2)}{G_M^p(q^2)} \right|^2 \approx \left(\frac{q_d}{q_u} \right)^2 = \frac{1}{4}$$

Time-like Form-Factors (BESIII)

Proton Timelike Form-Factor (BaBar)

"Dipole-like" over-all fit subtracted:

- Interference structure
- Interpretation: Rescattering in $p\overline{p}$ final state, e.g. π , ρ , ω exchange

• Separation via angular structure: $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2\beta}{4s} C\left(\left|G_M(q^2)\right|^2 (1+\cos^2\theta) + \frac{4m^2}{q^2}\left|G_E(q^2)\right|^2 \sin^2\theta\right)$

Hadron Physics

- An invaluable tool for a deep understanding of strong interaction and QCD
- Exciting experimental Results
 - \blacktriangleright New discoveries \approx 1/year
 - XYZ and clear signatures of Exotic States
- Continuing Progress in Theory
 - ► Lattice QCD
 - Modelling of exotic states
- Running and new Facilities for Spectroscopy
 - ▶ LHC, e^+e^- Colliders
 - ► JLab 12
 - ► PANDA at FAIR
- Precission Physics
 - ► Determination of the Wave Function
 - Connection to Atomic Physics
- And still a lot to do ...