

PROBING OF XYZ MESON STRUCTURE WITH NEAR THRESHOLD pp & pA COLLISIONS

<u>Mikhail Barabanov</u>, Alexander Vodopyanov (Joint Institute for Nuclear Research, Dubna, Russia)

in collaboration with

Stephen Olsen (University of the Chinese Academy of Science, Beijing, Republic of China) & (Institute for Basic Science, Daejeon, Republic of Korea)

Complex NICA

Collider basic parameters: *beams: from* p to Au; $L\sim 10^{27} \text{ cm}^{-2} \text{ c}^{-1} (\text{Au}), \sqrt{s_{NN}} = 4-11 \text{ GeV}; \sim 10^{32} \text{ cm}^{-2} \text{ c}^{-1} (\text{p}), \sqrt{s} = 12-26 \text{ GeV};$

BMON

Experiments with fixed targets with bld. 205 BM@f

Booster (600 MeV/u)

KRION-6T+HILac (3MeV/u)

PS and

LU-20 (5MeV/u)

NUCLOTRON

OCAECOVIN		
0.6-4.5 Gev/u	Ring circumference, m	503.04
	heavy ions	
	β, m	0.35
States and	energy range for Au⁷⁹⁺: √S _{NN} , GeV	4 - 11
	<i>r.m.s.</i> ⊿p/p, 10 ⁻³	1.6
A MARY SALAR	peak Luminosity for Au⁷⁹⁺ , cm ⁻² s ⁻¹	1x10 ²⁷
	polarized particles	
	max. energy for polarized p , Gev	27
	peak Luminosity for p , cm ⁻² s ⁻¹	1x10 ³²

MPD

Accelertor complex LHEP

SPD

Collider NICA

(1-4.5 GeV/u, C=503 m)

MultiPurpose Detector - MPD

existing

In preparation

MOTIVATION

To look for different charmonium-like states (conventional and exotic) in *pp* and *pA* collisions to obtain complementary results to the ones from *e+e*interactions, *B*-meson decays and *pp\bar* interactions

The quark potential models have successfully described the charmonium spectrum, which generally assumes short-range coulomb interaction and long-range linear confining interaction plus spin dependent part coming from one gluon exchange. The zero-order potential is:

$$V_0^{(c\bar{c})}(r) = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\tilde{\delta}_{\sigma}(r)\vec{S}_c\cdot\vec{S}_{\bar{c}},$$

where $\tilde{\delta}_{\sigma}(r) = (\sigma/\sqrt{\pi})^3 e^{-\sigma^2 r^2}$ defines a gaussian-smeared hyperfine interaction.

Solution of equation with $H_0 = p^2/2m_c + V_0^{(c\bar{c})}(r)$ gives zero order charmonium wavefunctions. **T. Barnes, S. Godfrey, E. Swangon, Phys. Rev. D* 72, 054026 (2005), hep-ph/0505002 & Ding G.J. et al., arXiV: 0708.3712 [hep-ph], 2008 The splitting between the multiplets is determined by taking the matrix element of the $V_{spin-dep}$ taken from one-gluon exchange Breit-Fermi-Hamiltonian between zero-order wave functions:

$$V_{\text{spin-dep}} = \frac{1}{m_c^2} \left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r} \right) \vec{\mathbf{L}} \cdot \vec{\mathbf{S}} + \frac{4\alpha_s}{r^3} \mathbf{T} \right]$$

where α_s - coupling constant, *b* - string tension, σ - hyperfine interaction smear parameter.

Izmestev A. has shown * *Nucl. Phys., V.52, N.6 (1990)* & **Nucl. Phys., V.53, N.5 (1991)* that in the case of curved coordinate space with radius *a* (confinement radius) and dimension *N* at the dominant time component of the gluonic potential the quark-antiquark potential defines via Gauss equations. If space of physical system is compact (sphere S³), the harmonic potential assures confinement: **Advances in Applied Clifford Algebras, V.8, N.2, p.235 - 270 (1998)*.

$$\Delta V_{N}(\vec{r}) = \text{const } G_{N}^{-1/2}(r)\delta(\vec{r}), \qquad V_{N}(r) = V_{0}\int D(r)R^{1-N}(r)dr/r, \quad V_{0} = \text{const} > 0.$$

$$R(r) = \sin(r/a), \quad D(r) = r/a, \qquad V_{3}(r) = -V_{0}\operatorname{ctg}(r/a) + B, \qquad V_{0} > 0, \quad B > 0.$$

When cotangent argument in V₃(r) is small: $r^2/a^2 \ll \pi^2$, we get: $ctg(r/a) \approx a/r - r/3a$, $V(r)|_{r \to 0} \sim 1/r$

where R(r), D(r) and $G_N(r)$ are scaling factor, gauging and determinant of metric tensor $G_{\mu\nu}(r)$.

Software

- 1. MpdRoot as a framework
- 2. Pythia8, UrQMD3.3 generators
- 3. MpdRoot Geant3 transport
- 4. MpdRoot TPC Kalman filter based track and vertex reconstruction

Invariant mass: $e^- + e^+$ or $\mu^- + \mu^+$

7 weeks

$X(3872) \rightarrow J/\psi + \rho^0$

Probing the X(3872) meson structure with near-threshold pp and pA collisions at NICA

M.Yu. Barabanov¹, S.-K. Choi², S.L. Olsen^{3†}, A.S. Vodopyanov¹ and A.I. Zinchenko¹

Joint Institute for Nuclear Research, Joliot-Curie 6 Dubna Moscow region Russia 141980
 (2) Department of Physics, Gyeongsang National University, Jinju 660-701, Korea

(3) Center for Underground Physics, Institute for Basic Science, Daejeon 34074, Korea

Pythia8 predictions for X(3872)

1. X-section of $\psi(3770)$ with m = 3.872 GeV at pp 12.5+6.5 GeV: 1.3 nb

- 2. X-section at pCu: 1.3 * A (=63) = 81.9 nb
- 3. Br (X(3872)→J/ $\psi \pi + \pi -$) = 5.00% Br (X(3872)→D⁺D⁻) = 40.45% Br (X(3872)→D⁰D*⁰bar) = 54.55% ⇒ D⁰D⁰bar π^{0} = 35.29%
- 4. Br $(D+->K-\pi+\pi+) = 9.2\%$, Br $(D0->K-\pi+) = 3.8\%$

5. $\sigma(pCu) * Br(J/\psi \pi + \pi -) * Br(e+e-) = 81.9 * 0.05 * 0.06 = 0.246 \text{ nb}$ $\sigma(pCu) * Br(D+D-) * Br(K\pi\pi)^2 = 81.9 * 0.4045 * 0.092 * 0.092 = 0.280 \text{ nb}$ $\sigma(pCu) * Br(D^0D^0bar\pi^0) * Br(K\pi)^2 = 81.9 * 0.3529 * 0.039 * 0.039 =$

 $\sigma(pCu) * Br(D^{\circ}D^{\circ}bar\pi^{\circ}) * Br(K\pi)^{2} = 81.9 * 0.3529 * 0.039 * 0.039 = 0.044 \text{ nb}$

0.280 nb => L = 5.9 x 10²⁹ (1000 events / 10 weeks)

Probably a mixture of DD ^{*} & a cc ^{*} core^{*}

Near-threshold prod. via pp & pA

 $\sqrt{s_{pN}} \simeq 8 \text{ GeV}$

