

Development of an accurate DWIA model of coherent $\pi^0-{\rm photoproduction}$ to study neutron skins in medium heavy nuclei

${\sf Frederic}\ {\rm Colomer}$

Université libre de Bruxelles Johannes Gutenberg Universität Mainz

January the 23rd, 2019

neutron-rich nuclei
 properties strongly dependent on symmetry energy
 neutron stars

Equation of state (EOS) of asymmetric matter

$$\mathcal{E}(\rho, \alpha) = \mathcal{E}(\rho, \alpha = 0) + S(\rho) \alpha^2 + \dots \qquad \alpha = \frac{N - Z}{A}$$

where α is the neutron-proton asymmetry.

neutron-rich nuclei
 properties strongly dependent on symmetry energy
 neutron stars

Equation of state (EOS) of asymmetric matter

$$\mathcal{E}(\rho, \alpha) = \mathcal{E}(\rho, \alpha = 0) + S(\rho) \alpha^2 + \dots \qquad \alpha = \frac{N - Z}{A}$$

where α is the neutron-proton asymmetry.

Taylor expansion around nuclear saturation density $\rho_0 ~(\simeq 0.15 \text{ fm}^{-1})$:

$$S(\rho) = J + L \left(\frac{\rho - \rho_0}{3\rho_0}\right) + \frac{1}{2}K_{\text{sym}} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \dots$$

We can constrain L with the neutron skin.

What is the neutron skin?

Where go the extra neutrons in n-rich systems (208 Pb: N=126, Z=82)?

- Symmetry energy favors to move them to the surface
- Surface tension favors spherical drop of *uniform* equilibrium density
- \Rightarrow formation of a neutron skin Δr_{np} , larger as A increases

Where go the extra neutrons in n-rich systems (208 Pb: N=126, Z=82)?

- Symmetry energy favors to move them to the surface
- Surface tension favors spherical drop of *uniform* equilibrium density
- \Rightarrow formation of a neutron skin Δr_{np} , larger as A increases

The coherent π^0 photoproduction

In Mainz, at MaMi:

 π^0 -photoproduction (on ^{116, 120, 124}Sn)

TAPS

Advantages:

- Same amplitude for n and p
 - \rightarrow Sensitivity to nucleon dist.
- Photon is neutral
 - ightarrow Whole volume is probed

Drawbacks:

- Final state interactions
 - \rightarrow Model dependence
- Delta resonance region
 - \rightarrow Model dependence

The coherent π^0 photoproduction

In Mainz, at MaMi: coherent π^0 -photoproduction (on ^{116,120,124}Sn)

Advantages:

- Same amplitude for n and p
 - \rightarrow Sensitivity to nucleon dist.
- Photon is neutral
 - ightarrow Whole volume is probed

Drawbacks:

- Final state interactions
 - $\rightarrow \ {\sf Model} \ {\sf dependence}$
- Delta resonance region
 - \rightarrow Model dependence

The coherent π^0 photoproduction

In Mainz, at MaMi: coherent π^0 -photoproduction (on ^{116,120,124}Sn)

Advantages:

- $\bullet\,$ Same amplitude for n and p
 - $\rightarrow\,$ Sensitivity to nucleon dist.
- Photon is neutral
 - $\rightarrow\,$ Whole volume is probed

Drawbacks:

- Final state interactions
 - \rightarrow Model dependence
- Delta resonance region
 - \rightarrow Model dependence
- PRL 112, 242502 (2014): skin of 0.15 \pm 0.05 fm on ^{208}Pb
 - Choice of density
 - Errors due to model dependencies

Plane wave impulse approximation (PWIA)

- Plane wave: no final state interactions of the pion with nucleus.
- Impulse approximation: only one nucleon interacts with the photon.

Cross section (Drechsel, Tiator, Kamalov and Yang in NPA 660, 423):

Plane wave impulse approximation (PWIA)

- Plane wave: no final state interactions of the pion with nucleus.
- Impulse approximation: only one nucleon interacts with the photon.

Cross section (Drechsel, Tiator, Kamalov and Yang in NPA 660, 423):

Densities used for the calculations

Densities of $^{124}\mathrm{Sn}$

- Sao Paulo (Phenomenological) \rightarrow Fermi-Dirac
- FSU model (courtesy of J. Piekarewicz)

 \rightarrow Microscopic MF model

Can we differentiate them on a photo-production cross section?

Densities used for the calculations

Densities of $^{124}\mathrm{Sn}$

 \neq skins

- Sao Paulo (Phenomenological)
 - \rightarrow Fermi-Dirac Δr_{np} =0.05 fm
- FSU model (courtesy of J. Piekarewicz)
 - $\begin{array}{l} \rightarrow \quad \mbox{Microscopic MF model} \\ \Delta r_{np}^{\rm FSU00} {=} 0.28 \ \mbox{fm} \\ \Delta r_{np}^{\rm FSU40} {=} 0.19 \ \mbox{fm} \end{array}$

Can we differentiate them on a photo-production cross section?

For these densities, photo-production in PWIA (¹²⁴Sn, 180-190 MeV):

For these densities, photo-production in PWIA (124 Sn, 180-190 MeV):

For these densities, photo-production in PWIA (¹²⁴Sn, 180-190 MeV):

Comparison with experiment at $T_{\gamma} = 180\text{-}190 \text{ MeV}$

Comparison with experiment at $T_{\gamma} = 200\text{-}210 \text{ MeV}$

 θ precision $\sim 1^{\circ}$

Less good agreement Shift of second peak

Data courtesy of M. Ferretti (PRELIMINARY)

Distorted wave impulse approximation (DWIA)

Cross section of photoproduction in DWIA

 \rightarrow Final state interactions taken into account

Comparison with experiment at $T_{\gamma} = 180-190 \text{ MeV}$

Comparison with experiment at $T_{\gamma} =$ 180-190 MeV

Good agreement $2^{\rm nd}$ peak reproduced No $\rho(q)$ dependence

Comparison with experiment at $T_{\gamma} = 200-210 \text{ MeV}$

Data courtesy of M. Ferretti (PRELIMINARY)

Comparison with experiment at $T_{\gamma} = 200\text{-}210 \text{ MeV}$

Less good agreement $1^{\rm st}$ peak suppressed $2^{\rm nd}$ peak reproduced ho(q) dependence potential needs to be adjusted

Data courtesy of M. Ferretti (PRELIMINARY)

Conclusion, prospects and thanks

• New reaction model implemented

- $\diamond~$ PWIA has dependence when differences of skins \sim 0.10 fm (but little)
- $\diamond~$ DWIA $\pi-A$ potential needs adjustments in range of energies

• What remains to be done

- Can we infer information about skin from comparing different isotopes?
- \diamond Constraints on DWIA πA potential
- \diamond Analysis of the dependence to πA potential (DWIA)
- \diamond DREN (Δ resonance) to be studied and adjusted

Conclusion, prospects and thanks

• New reaction model implemented

- $\diamond~$ PWIA has dependence when differences of skins \sim 0.10 fm (but little)
- $\diamond~$ DWIA $\pi-A$ potential needs adjustments in range of energies

• What remains to be done

- ◊ Can we infer information about skin from comparing different isotopes?
- \diamond Constraints on DWIA πA potential
- \diamond Analysis of the dependence to πA potential (DWIA)
- \diamond DREN (Δ resonance) to be studied and adjusted

Thank you for your attention

Many thanks to my collaborators (P. Capel, C. Sfienti, M. Vanderhaeghen M. Thiel, M. Ferretti, V. Tsaran)

Backup

< E

三日 のへで

Bethe-Weizsäcker: incompressible quantum liquid-drop binding energy

$$B(Z,N) = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \dots$$

In the limit where volume V and $A \rightarrow \infty$ but $A/V = \rho_0$ constant

$$\epsilon(\alpha) \equiv -\frac{B(Z,N)}{A} = -a_V + J\alpha^2, \qquad \alpha = \frac{N-Z}{A}$$

 α neutron-proton asymmetry.

Incompressible \rightarrow fails to reproduce response to density fluctuations \Rightarrow Equation of state (EOS) of asymmetric matter

$$\mathcal{E}(\rho, \alpha) = \mathcal{E}(\rho, \alpha = 0) + S(\rho) \alpha^2 + \dots \qquad \alpha = \frac{N - Z}{A}$$

$\pi-A$ potential used

We currently use the potential (Phys. Rev. C25, 952 (1982))

$$U(\vec{k}', \vec{k}) \propto \left[(\hat{b}_0 + \hat{c}_0 q^2) \rho_A(q) + (\hat{B}_0 + \hat{C}_0 q^2) \rho_{A,2}(q) + (\vec{k} \cdot \vec{k}') \mathcal{L}(q) \right] \\ \begin{cases} \mathcal{L}(q) = FT(\mathcal{L}(r)) = FT\left(\frac{L(r)}{1 + (4\pi/3)\lambda L(r)}\right) \\ L(r) = \hat{c}_0 \rho_A(r) + \hat{C}_0 \rho_{A,2}(r) \end{cases}$$

Derived from most general $\pi - N$ potential (for spin 0 nucleus!) + Abs.

$$f^{\pi N}(\vec{k}'_{\pi},\vec{k}_{\pi}) = b_0 + b_1 \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_{\boldsymbol{N}} + (c_0 + c_1 \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_{\boldsymbol{N}}) \vec{k}_{\pi} \cdot \vec{k}'_{\pi}$$

 \hat{b}_0, \ldots fitted on C, O, Ca, Zr, Pb ($T_{\pi}^{\text{lab}} = 50 \text{ MeV} \rightarrow T_{\gamma}^{\text{lab}} \sim 180 \text{ MeV}$) E dep. shaped like b_0, \ldots from SAID ($\leftarrow \text{http://gwdac.phys.gwu.edu/analysis/pin_analysis.html}$) Derivation of new potential ongoing (with V. Tsaran, M. Vanderhaeghen)

JOC ELE

$\pi-A$ potential used

We currently use the potential (Phys. Rev. C25, 952 (1982))

$$U(\vec{k}',\vec{k}) \propto \left[(\hat{b}_0 + \hat{c}_0 q^2) \rho_A(q) + (\hat{B}_0 + \hat{C}_0 q^2) \rho_{A,2}(q) + (\vec{k} \cdot \vec{k}') \mathcal{L}(q) \right] \\ \begin{cases} \mathcal{L}(q) = FT(\mathcal{L}(r)) = FT\left(\frac{L(r)}{1 + (4\pi/3)\lambda L(r)}\right) \\ L(r) = \hat{c}_0 \rho_A(r) + \hat{C}_0 \rho_{A,2}(r) \checkmark \mathsf{FT}(\rho^2(r)) \end{cases}$$

Derived from most general $\pi - N$ potential (for spin 0 nucleus!) + Abs.

$$f^{\pi N}(\vec{k}'_{\pi},\vec{k}_{\pi}) = b_0 + b_1 \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_{N} + (c_0 + c_1 \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_{N}) \vec{k}_{\pi} \cdot \vec{k}'_{\pi}$$

 \hat{b}_0, \ldots fitted on C, O, Ca, Zr, Pb ($T_{\pi}^{\text{lab}} = 50 \text{ MeV} \rightarrow T_{\gamma}^{\text{lab}} \sim 180 \text{ MeV}$) E dep. shaped like b_0, \ldots from SAID ($\leftarrow \text{http://gwdac.phys.gwu.edu/analysis/pin_analysis.html}$) Derivation of new potential ongoing (with V. Tsaran, M. Vanderhaeghen)

JOC ELE

$\pi - A$ potential in development

Derived from most general $\pi - N$ potential (for spin 0 nucleus!)

$$f^{\pi N}(\vec{k}'_{\pi},\vec{k}_{\pi}) = b_0 + b_1 \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_{N} + (c_0 + c_1 \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_{N}) \vec{k}_{\pi} \cdot \vec{k}'_{\pi}$$

 b_0 , b_1 , c_0 and c_1 taken from SAID ($http://gwdac.phys.gwu.edu/analysis/pin_analysis.html)$

- + Impulse approximation (other nucleons of nucleus are spectators)
- + Folding with density of nucleus
- + Kinematic corrections $(\pi-N ext{ to } \pi-A ext{ cm. frame})$

+ Adding absorption (B_0 and C_0 parameters from NPA329, 429 (1979)) Derivation has been done for ¹²C (V. Tsaran):

$$U(\vec{k}',\vec{k}) \propto U^{1\text{st}} + U^{2\text{nd}} + U^{\text{abs}}$$

$$= \left\{ [b_0 + c_0(\vec{k} \cdot \vec{k}' + q^2)]\rho_A(q) + c_0K(q) \right\}$$

$$+ \left\{ \tilde{b}_0^2 Z_{ss}(\vec{k}',\vec{k}) + \tilde{b}c Z_{sp}(\vec{k}',\vec{k}) + \tilde{c}_0 Z_{pp}(\vec{k}',\vec{k}) \right\}$$

$$+ \left\{ B_0 + C_0[\vec{k} \cdot \vec{k}' + q^2] \right\} \rho_{A,2}(q)$$

I

$\pi - A$ potential in development

Derived from most general $\pi - N$ potential (for spin 0 nucleus!)

$$f^{\pi N}(\vec{k}'_{\pi},\vec{k}_{\pi}) = b_0 + b_1 \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_{\boldsymbol{N}} + (c_0 + c_1 \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_{\boldsymbol{N}}) \vec{k}_{\pi} \cdot \vec{k}'_{\pi}$$

 b_0 , b_1 , c_0 and c_1 taken from SAID (\cdot http://gwdac.phys.gwu.edu/analysis/pin_analysis.html)

- + Impulse approximation (other nucleons of nucleus are spectators)
- + Folding with density of nucleus
- + Kinematic corrections $(\pi-N ext{ to } \pi-A ext{ cm. frame})$
- + Adding absorption (B_0 and C_0 parameters from NPA329, 429 (1979))

Derivation has been done for ${}^{12}C$ with HO (V. Tsaran):

$$\begin{split} U(\vec{k}',\vec{k}) &\propto U^{1\text{st}} + U^{2\text{nd}} + U^{\text{abs}} \\ &= \left\{ [b_0 + c_0(\vec{k}\cdot\vec{k}'+q^2)]\rho_A(q) + c_0K(q) \right\} \\ \hline \text{Need w.-funct.} & + \left\{ \tilde{b}_0^2 Z_{ss}(\vec{k}',\vec{k}) + \tilde{b}c Z_{sp}(\vec{k}',\vec{k}) + \tilde{c}_0 Z_{pp}(\vec{k}',\vec{k}) \right\} \\ &+ \left\{ B_0 + C_0[\vec{k}\cdot\vec{k}'+q^2] \right\} \rho_{A,2}(q) \end{split}$$

$\pi - A$ potential in development

Derived from most general $\pi - N$ potential (for spin 0 nucleus!)

$$f^{\pi N}(\vec{k}'_{\pi},\vec{k}_{\pi}) = b_0 + b_1 \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_{N} + (c_0 + c_1 \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_{N}) \vec{k}_{\pi} \cdot \vec{k}'_{\pi}$$

 b_0 , b_1 , c_0 and c_1 taken from SAID (\cdot http://gwdac.phys.gwu.edu/analysis/pin_analysis.html)

- + Impulse approximation (other nucleons of nucleus are spectators)
- + Folding with density of nucleus
- + Kinematic corrections $(\pi-N ext{ to } \pi-A ext{ cm. frame})$
- + Adding absorption (B_0 and C_0 parameters from NPA329, 429 (1979))

Derivation has been done for ${}^{12}C$ with HO (V. Tsaran):

$$\begin{split} U(\vec{k}',\vec{k}) &\propto U^{1\text{st}} + U^{2\text{nd}} + U^{\text{abs}} \\ &= \left\{ [b_0 + c_0(\vec{k} \cdot \vec{k}' + q^2)] \rho_A(q) + c_0 K(q) \right\} \\ \hline \text{Need w.-funct.} & + \left\{ \tilde{b}_0^2 Z_{ss}(\vec{k}',\vec{k}) + \tilde{b}_c Z_{sp}(\vec{k}',\vec{k}) + \tilde{c}_0 Z_{pp}(\vec{k}',\vec{k}) \right\} \\ &+ \left\{ B_0 + C_0[\vec{k} \cdot \vec{k}' + q^2] \right\} \rho_{A,2}(q) \leftarrow \mathsf{FT}(\rho^2(r)) \end{split}$$

How close to data are we with the potential (on 12 C)?

How close to data are we with the potential (on ${}^{12}C$)?

Frederic Colomer (ULB/JGU-M)

January the 23rd, 2019 5/9

Influence of radius R on the photo-production cross section

As R increases $(\pm 10\%)$,

- First peak \downarrow
- Second peak \uparrow
- Large shift to small ang.

Peak to peak ratio exhibits large variations

Influence of diffuseness d on the photo-production cross section

Influence of radius R on the photo-production cross section with distortion

As R increases ($\pm 10\%$), impact of DWIA is

- smaller on first peak
- smaller on second peak
- the same at all angles

Peak to peak ratio exhibits small variations

Influence of diffuseness \boldsymbol{d} on the photo-production cross section with distortion

As d increases ($\pm 10\%$), impact of DWIA is

- nil on first peak
- smaller on second peak
- the same at all angles

Peak to peak ratio exhibits small variations