Search for a stable six-quark state in Y decays

Wolfgang Gradl

on behalf of the BABAR collaboration

57th International Winter Meeting on Nuclear Physics 22nd January 2019

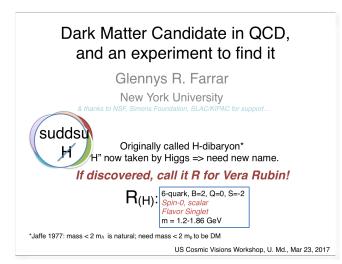
Six-quark configurations

In recent years, have found good candidates for

- tetraquarks / molecules: $q\overline{q}q\overline{q}$, e.g. $Z_c(4430)^+$, $Z_c(3900)^+$, ...
- pentaquarks: $qqqq\overline{q}$: $P_c(4380)^+$, $P_c(4450)^+$

Di-Baryon: quark configuration $|qqqqqq\rangle$

```
 \begin{array}{ll} \mbox{Jaffe (1977): $H$-dibaryon, flavour-singlet, $S$-wave $|udsuds$\rangle$.} \\ \mbox{~loosely bound $\Lambda$A$.} \\ \mbox{Bag model prediction $m_H$ $\approx$ $2150 $ MeV$} \\ \mbox{R. Jaffe, Phys. Rev. Lett. $$38, 195 (1977)$} \\ \end{array}
```


If $m_H < 2m_\Lambda = 2230$ MeV, stable against strong decays. Expected to decay weakly: lifetime $\sim 10^{-10}$ s

Numerous searches failed to find H-dibaryon

A new beginning ...

G. Farrar (2017): new dark matter candidate from QCD |uuddss)

A new beginning ...

Tightly bound six-quark combination S $\sim |\textit{uuddss}\rangle$

- *B* = 2, *Q* = 0, *S* = −2
- spin 0 (scalar: $J^P = 0^+$)
- flavour singlet with very small coupling to π, ρ, \ldots
- mass *M* < 2.05 GeV
- very compact, *r* ~ 0.1 fm to 0.4 fm

Dubbed the "'sexaquark"', to distinguish from H-dibaryon (loosely bound, weak-decay lifetime)

Motivation:

QCD aspects

- |uuddss> spatial wave function completely symmetric.
 Generic arguments imply S should be most tightly bound state of its class
- Sexaquark S tightly bound state.

if $m_S < m_\Lambda + m_\rho + m_e =$ 2.05 GeV: only doubly-weak decays allowed cosmological lifetime

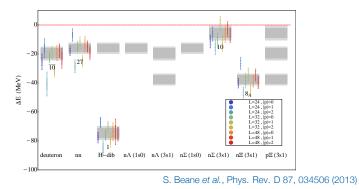
if $m_{\rm S} < 2m_{\rm p}$: absolutely stable

• *S–N* interaction suppressed by tiny wavefunction overlap. Neutron stars do not decay to *S*.

Non-observation of $nn \rightarrow S\pi^0$ in nuclei may imply lower bound $m_S \gtrsim 2m_N - m_\pi \approx 1.7 \, {\rm GeV}$

Not excluded by current constraints on H-dibaryon does not bind to nuclei (no constraints from exotic isotopes) not excluded by accelerator experiments below 2 GeV not excluded by hypernuclear experiments stable hexaguark with m < 2.05 GeV still allowed</p>

See G. Farrar, arXiv:1708.08951 for QCD phenomenology



Lattice QCD?

Lattice calculation in the limit of SU(3) flavour symmetry, with $m_{\pi} = m_{K} \approx 800 \text{ MeV}$.

Binding energy for various baryon-baryon systems:

Singlet state most tightly bound. More work needed to get to physical pion mass.

Candidate for Dark Matter?

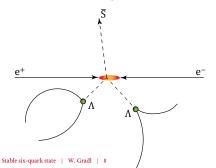
If DM consists of nearly equal amount of *u*, *d*, *s* quarks: formation rate driven by QGP transition to hadronic phase.

Sexaquark DM with mass ~ 1860–1880 MeV can reproduce ratio of DM to ordinary matter densities, $\Omega_{\rm DM}/\Omega_{\rm B}$ within 15%; fairly insensitive to details of DM.

Not excluded by current direct searches.

See G. Farrar, arXiv:1805.03723 for detailed explanation of DM phenomenology.

Ongoing discussion — see e.g. E. Kolb & M. Turner, arXiv:1809.06003

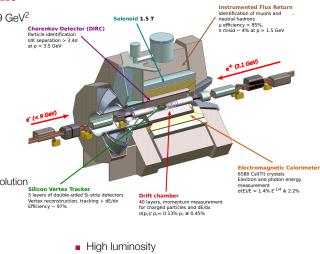

Searching for S

Proposed search channels:

- $K^- p \rightarrow \overline{\Lambda}S$ (e.g. NA61, but rates may be negligibly small)
- S production at LHC, followed by annihilation in beam pipe or detector material
- Y decays, below open-bottom threshold:

```
\Upsilon(2S, 3S) [\rightarrow gluons] \rightarrow S\overline{\Lambda}\overline{\Lambda} \text{ or } \overline{S}\Lambda\Lambda
```

Inclusive branching fraction, from heuristic arguments based on statistical model: 10^{-7} , with large uncertainties

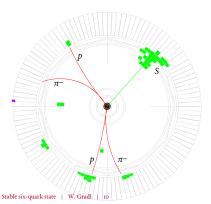

Identify S in the recoil against $\Lambda\Lambda$:

$$m_{\rm rec}^2 = \left(p_Y^\mu - p_{\Lambda_1}^\mu - p_{\Lambda_2}^\mu\right)^2$$

The BABAR experiment

- PEP-II: e^+e^- collider, $3.1 \times 9 \text{ GeV}^2$ $\sqrt{s} = 10.58 \text{ GeV} [Y(4S)]$
- Asymmetric beam energies c.m. lab boost $\beta \gamma = 0.56$
- Asymmetric detector
 - acceptance in c.m. $-0.9 \lesssim \cos \theta^* \lesssim 0.85$
- excellent performance
 - Good tracking, mass resolution
 - Good γ , π^0 reco.
 - Full PID for e, μ, π, Κ, p
- in operation 1999 2008; collaboration still active

L_{peak} = 12 × 10³³ cm⁻² s⁻¹
 426 fb⁻¹ on Y(4S)
 90 million Y(2S)
 110 million Y(3S)

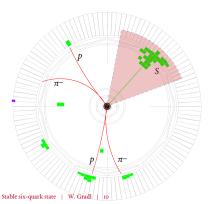


Analysis overview

Search for $\Upsilon(nS) \to \overline{\Lambda}\overline{\Lambda}S + c.c.$,

Fully reconstruct $\Lambda \to \rho \pi^-$, $\mathcal{B} \approx$ 0.64; aim for zero background in signal region.

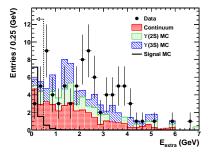
- Require four charged tracks + at most one additional track not from IP
- Apply loose PID criteria to select (anti-)protons
- $\Lambda\Lambda$ or $\overline{\Lambda}\overline{\Lambda}$ with $\Lambda o p\pi^-$
- Flight significance of each Λ : $|\vec{r}| / \sigma_r > 5$
- Λ points back to IP: $\cos \sphericalangle(\vec{r}, \vec{p}) > 0.9$



Analysis overview

Search for $\Upsilon(nS) \to \overline{\Lambda}\overline{\Lambda}S + c.c.$,

Fully reconstruct $\Lambda \to \rho \pi^-$, $\mathcal{B} \approx$ 0.64; aim for zero background in signal region.


- Require four charged tracks + at most one additional track not from IP
- Apply loose PID criteria to select (anti-)protons
- $\Lambda\Lambda$ or $\overline{\Lambda}\overline{\Lambda}$ with $\Lambda o p\pi^-$
- Flight significance of each Λ : $|\vec{r}| / \sigma_r > 5$
- Λ points back to IP: $\cos \triangleleft(\vec{r}, \vec{p}) > 0.9$

- Sum energy in EMC outside of cone around inferred S direction: *E*_{extra} < 0.5 GeV
- Apply blind analysis: design and tune analysis on MC simulated data and on validation sample with *E*_{extra} > 0.5 GeV

After preselection

Use E_{extra} sideband to assess backgrounds and to normalize Y(2S), Y(3S) MC. Continuum background estimated using Y(4S) data sample. Signal region $E_{\text{extra}} < 0.5 \,\text{GeV}$: 2 entries per event, peak at Λ mass.

Finally, apply kinematic fit constraining Λ masses and requiring common origin; select events with $\chi^2 < 25$. 4 signal candidates remain.

Efficiency

Efficiency obtained from dedicated signal MC:

- decay amplitude given by G. Farrar (default)
- alternatively, generate flat in phase space
- model S like a neutron (default)
- alternatively, like neutrino (no interaction with detector material)

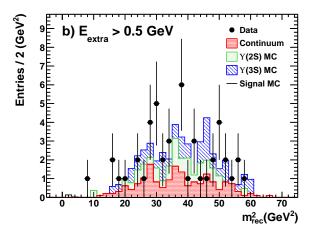
Use differences to assess systematic uncertainties.

Efficiency, not including $\mathcal{B}(\Lambda \to \rho \pi^-)^2$: from 17% at threshold to 20% near 2 GeV mainly driven by geometrical acceptance.

Mass resolution (using recoil mass technique) about 100 MeV.

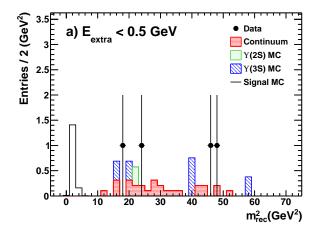
$$m_{\rm rec}^2 = \left(p_Y^\mu - p_{\Lambda_1}^\mu - p_{\Lambda_2}^\mu\right)^2$$

Systematic uncertainties on efficiencies


Mainly from the following sources:

- Signal modelling
 - production amplitude, influencing angular distribution
 - interactions in detector
- Data/MC differences in reconstruction

S angular distribution	5-8%
S particle type	8–11%
Λ reconstruction	4% per Λ
MC statistics	2%
$\mathcal{B}(\Lambda ightarrow ho \pi^{-})$	1.6%
proton PID	1% per proton
Number of Y	0.6%

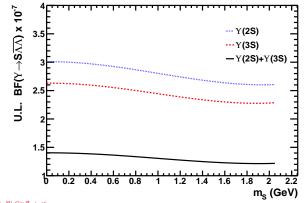

E_{extra} Sideband data

Eextra sideband: zero observed background events in signal region.

Final results, signal region $E_{\text{extra}} < 0.5 \,\text{GeVBAR preliminary, arXiv:1810.04724}$

Signal MC: S with mass 1.6 GeV and $\mathcal{B}(\Upsilon(nS) \to S\overline{\Lambda}\overline{\Lambda}) = 10^{-7}$

No signal event observed, no background event expected! Stable six-quark state | W. Gradl | 15


Upper limit on $\mathcal{B}(\Upsilon(nS) \to S\overline{\Lambda}\overline{\Lambda})$

BABAR preliminary, arXiv:1810.04724

Scanning S masses $0 \le m_S \le 2.05$ GeV in steps of 50 MeV.

Use profile likelihood method to set upper limit at the 90% C.L. including systematic uncertainties.

 $\mathcal{B}(\Upsilon(nS) \to S\overline{\Lambda}\overline{\Lambda}) < 1.2 \cdots 1.4 \times 10^{-7}$

Summary

- Tightly bound $S \sim |uussdd\rangle$ may be more stable than previously thought. Stable even on cosmological time scales if $m_S < m_p + m_\Lambda + m_e = 2054.5 \text{ MeV}$
- If it exists, candidate for dark matter
- Surprisingly, not yet excluded by dozens of searches for H-dibaryon
- Clean search channel: $\Upsilon(2S, 3S)$ decays, in recoil against $\Lambda\Lambda$ or $\overline{\Lambda}\overline{\Lambda}$
- Use BABAR's data sample of 200 million Y(2S, 3S)
- No signal found, no background left: Stringent limits on existence of S $\mathcal{B}(\Upsilon(nS) \rightarrow S\overline{\Lambda}\overline{\Lambda}) < 1.2 \cdots 1.4 \times 10^{-7}$
- However, *exclusive* BF may be much smaller than BABAR's sensitivity; need to look into semi-inclusive channels like $S\overline{AAX}$

