Transition form factor of the ⁴He(M0⁺)-Resonance Bormio Winter Conference 2019

Simon Kegel

Institut für Kernphysik, JGU Mainz

25.01.19

Theory of nuclear structure

• Lattice QCD to describe subhadronic processes

Theory of nuclear structure

- Lattice QCD to describe subhadronic processes
- Effective field theory (EFT) for nucleons inside the nucleus (non-pert. regime)

Effective field theory (EFT)

• EFT: Ab-initio calculations with pion-exchange diagrams

	Two-nucleon force	Three-nucleon force	Four-nucleon force
LO	X 	—	—
NLO	ХИАМЦ	—	—
N ² LO	44 	HH HX X	—
N ³ LO	* * * * * * * * * * * * * * * * * * *	₩₩₩~	HKI HVI

Effective field theory (EFT)

- EFT: Ab-initio calculations with pion-exchange diagrams
- Good agreement for topics like Hoyle-state ¹²C, neutron skin ⁴⁸Ca, nuclear form factors, etc.
 - E. Epelbaum et al. PRL 106, 192501, G. Hagen Nature Physics 12, 186-190 (2016)

	Two-nucleon force	Three-nucleon force	Four-nucleon force
LO	XH	—	—
NLO	ХМАМЦ	—	_
N ² LO	H 4	HH HX Ж	_
N ³ LO	X₩444- ₩4₩₩-	₩ ₩ KX	H41 H41

Effective field theory (EFT)

- EFT: Ab-initio calculations with pion-exchange diagrams
- Good agreement for topics like Hoyle-state ¹²C, neutron skin ⁴⁸Ca, nuclear form factors, etc.

E. Epelbaum et al. PRL 106, 192501, G. Hagen Nature Physics 12, 186-190 (2016)

Does it mean everything is well explained in EFT ?

EFT and ⁴He resonance

• 3NF ab-initio methods for ⁴He $FF_{el}(Q^2)$ FF

 \rightarrow Great accordance!

EFT and ⁴He resonance

- 3NF ab-initio methods for ⁴He $FF_{el}(Q^2)$ FF \rightarrow Great accordance!
- Same potentials & methods $FF_{M0^+}(Q^2)$ FF of 0⁺-res. \rightarrow Bad accordance! S. Bacca et al., *PRL* 110, 042503 (2013)

EFT and ⁴He resonance

- 3NF ab-initio methods for ⁴He $FF_{el}(Q^2)$ FF \rightarrow Great accordance!
- Same potentials & methods $FF_{M0^+}(Q^2)$ FF of 0⁺-res. \rightarrow Bad accordance! S. Bacca et al., *PRL* 110, 042503 (2013)

• MAMI: Electron accelerator with high quality beam

- MAMI: Electron accelerator with high quality beam
- A1 : 3 high resolution magnetic spectrometers

- MAMI: Electron accelerator with high quality beam
- A1 : 3 high resolution magnet spectrometers
- \rightarrow Access on a wide range of Q^2 under best experimental conditions

- Cryogenic helium target with aluminium cell
- Density of ⁴He inside cell $200 \times$ larger than He under std. cond.

From data to cross sections to form factors Determination of a form factor:

• $|\mathrm{FF}_{\mathrm{M0}^+}(Q^2)|^2 = (\frac{d\sigma}{d\Omega})_{\mathrm{Exp.}}/(\frac{d\sigma}{d\Omega})_{\mathrm{Mott}}$

From data to cross sections to form factors Determination of a form factor:

- $|\mathrm{FF}_{\mathrm{M0}^+}(Q^2)|^2 = (\frac{d\sigma}{d\Omega})_{\mathrm{Exp.}}/(\frac{d\sigma}{d\Omega})_{\mathrm{Mott}}$
- Data obtained by measuring scattered e^- at different kinematics / Q^2

From data to cross sections to form factors Determination of a form factor:

- $|\mathrm{FF}_{\mathrm{M0}^+}(Q^2)|^2 = (\frac{d\sigma}{d\Omega})_{\mathrm{Exp.}}/(\frac{d\sigma}{d\Omega})_{\mathrm{Mott}}$
- Data obtained by measuring scattered e^- at different kinematics / Q^2
- Investigation background, luminosity, det. efficiency, rad. corrections

- Ground- and ex. states of ²⁷Al simulated
- Empty cell measurements to improve simulations of ²⁷AI

- ²⁷Al quasi elastic simulation
- Becomes dominant at higher $m_{
 m miss}$

• ⁴He ground state: Well measured!

C.R. Ottermann et. al, Nucl. Physics A 436(4), (1985)

• Simulation of el. line used to double-check / normalise data

- ⁴He continuum contains qu. el. processes and many other resonances
- Several model fits to describe the continuum of ⁴He

- ⁴He continuum contains qu. el. processes and many other resonances
- Several model fits to describe the continuum of ⁴He
- To render the resonance, simulations were used

• Two models used for resonance: Voigt profile and a proposal by J.D. Jackson

J.D.Jackson, Nuove Cim. 34, (1964) Phelan & Marguiles, Nuove Cim. 58, (1968)

Data

Cell

 Two models used for resonance: Voigt profile and a proposal by J.D. Jackson J.D.Jackson, Nuove Cim. 34, (1964)

Phelan & Marguiles, Nuove Cim. 58, (1968)

• Radiative corrections included in the M.C.-simulation

M. Vanderhaeghen et al., Phys. Rev. C62, (2000)

Data

Cell

Intermezzo: FWHM Γ_0 of the resonance peak

Intermezzo: FWHM Γ_0 of the resonance peak

- $\bullet\,$ centr. value and FWHM Γ_0 are needed to sample the distributions
- Γ_0 not well known: determine Γ_0
- $\bullet\,$ Scanning a range of diff. Γ_0 and optimising simul. to data

Data

Cell

Intermezzo: FWHM Γ_0 of the resonance peak

- Γ_0 for two background & res. models independently
- dominant sys. errors: angular resolution and momentum resolution of spectrometers

• Reminder: $\left(\frac{d\sigma}{d\Omega}\right)_{\rm exp.} \propto$ "integrated events in peak of interest"

- Reminder: $\left(\frac{d\sigma}{d\Omega}\right)_{exp.} \propto$ "integrated events in peak of interest"
- all uncertainties under control: background, rad. corrections, luminosity...
 - \rightarrow elastic line in each setup for relative determination

• With uncertainties under control, one proceeds to calc. the form factor

- With uncertainties under control, one proceeds to calc. the form factor
- 44 setups, 3 beam energies, with two spectrometers (spec A & spec B)

- Result of $|\mathrm{FF}_{\mathrm{M0}^+}(Q^2)|^2$ in agreement with older data
- None of the theories can describe the data

Summary & Outlook

Summary

- We performed a measurement for a precise determination of the transition form factor $FF_{M0^+}(Q^2)$ under optimal conditions with inclusion of the well measured g.s. of ⁴He to reduce uncertainties
- $\bullet\,$ FWHM Γ_0 of the resonance was determined in addition to reduce sys. errors
- The transition form factor $\mathrm{FF}_{\mathrm{M0}^+}(Q^2)$ was determined with smaller statistical and systematical errors over a large range of Q^2 with two different spectrometers. The data shows great consistence and is in agreement with the so far existing world data

Summary & Outlook

Summary

- We performed a measurement for a precise determination of the transition form factor $FF_{M0^+}(Q^2)$ under optimal conditions with inclusion of the well measured g.s. of ⁴He to reduce uncertainties
- $\bullet\,$ FWHM Γ_0 of the resonance was determined in addition to reduce sys. errors
- The transition form factor $\mathrm{FF}_{\mathrm{M0}^+}(Q^2)$ was determined with smaller statistical and systematical errors over a large range of Q^2 with two different spectrometers. The data shows great consistence and is in agreement with the so far existing world data

Outlook

• Turn is now to the theory:

There is no theory on the market to describe $|FF_{M0^+}(Q^2)|^2$ well!

• Improved measurement of Γ_0 by MAGIX target (S. Aulenbacher)

Thanks for Your Attention!

Form factor ratio

Form factor ratio

⁴He quasi elastic

• Inclusion of 2-body break-up and 3-4 body break-up

Data-to-background ratio

• Ratio of data to background, normalised to max. at 19.85 MeV

Determination Γ_0

• Simul. of a certain Γ_0 , determine χ^2 to data

Determination Γ_0

- Simul. of a certain Γ_0 , determine χ^2 to data
- $\bullet\,$ Optimise with respect to best χ^2

