Feasibility studies of Hyperons Dalitz decays @ HADES

Krzysztof Nowakowski Jagiellonian University

Research supported by NCN grant 2017/25/N/ST2/00580 PRELUDIUM

Krzysztof Nowakowski

Hyperon – why?

- Hyperons spectroscopy PANDA
 - Di-leptons and radiative transitions-HADES
 - Part of FAIR Phase-0 program (test of straw tube tracker for PANDA)

Ronniger, M. & Metsch, B.C. Eur. Phys. J. A (2011)

Hyperons – electromagnetic decays

Model	Decay width Γ [KeV]							
	Δ(1234)->pγ	Σº(1385) → Λ(1116) γ	Λº(1405) → Λ(1116) γ	Λº(1520) → Λ(1116) γ				
Quarks models	350-360	265-273	118-200	156-215				
MIT bag	-	152	17, 60	46				
Soliton	-	170, 243	44, 40	-				
Skyrme	309-348	157-209	-	-				
Experi ment		479 ± 120		167 ± 43				

Taylor et al. (CLAS Collab.), Phys. Rev. C71 (2005) 054609 HADES: $\Gamma(\Delta(1232) \rightarrow p e^+e^-) = 0.66 \text{ MeV}, \text{ BR}=4.19 \cdot 10^{-5}$

Bormio, 21-25.II.2019

Dalitz decay – the key to electromagnetic structure

Dalitz decays, appearance of intermediate vector mesons! $\rho/\omega/\phi$ J^{PC} = 1⁻ (= γ !)

Bormio, 21-25.II.2019

Krzysztof Nowakowski

Simulation results - Ξ

H^* production	$pp ightarrow \Xi^-K^+K^+p$			
σ_{tot} :	4.8 µb			
H [*] Dalitz decay	—			
σ_{Dalitz}	—			
$\varepsilon_{H^* rec}$:	0.98%			
Expected count rate:				
proton target:	$2\cdot 10^4$ part/day			
PE target:	$14\cdot 10^4 \text{ part/day}$			

 $\sigma_{\underline{=}}$ estimated based on Λ/Σ (PRL 114, 212301 (2015)) ratio and Ξ/(Λ+Σ) ratio (Phys. Ref. B 781,735-740) – quite uncertain

Bormio, 21-25.II.2019

Summary

- Radiative decays of hyperon are an ideal tool to discriminate between different theoretical model.
- Dalitz decays were never measured can be done by HADES and compared with results obtained for non-strange sector (N*(1520), Δ(1232)).
- Performed simulation shows good perspectives for identification of hyperions at HADES.

Backup

Results given by HADES in hyperons sector

- → pp@ 3.5 GeV
 - "Inclusive Lambda production in proton-proton collisions at 3.5 GeV", Phys. Rev. C 95, 015207
 - · "Partial Wave Analysis of the Reaction $p(3.5GeV)+p \rightarrow pK+\Lambda$ to Search for the "ppK" Bound State", Phys.Lett. B742 (2015) 242-248
 - *"Lambda hyperon production and polarization in collisions of p(3.5 GeV)+Nb"*, Eur.Phys.J. A50 (2014) 81
 - "Baryonic resonances close to the K N threshold: the case of $\Lambda(1405)$ in pp collisions", Phys.Rev. C87 (2013) 025201
 - · *"Production of Sigma+- pi-+ pK+ in p+p reactions at 3.5 GeV beam energy"*, Nucl.Phys. A881 (2012) 178-186
 - "Baryonic resonances close to the Kbar-N threshold: the case of Sigma(1385)^+ in pp collisions", Phys.Rev. C85 (2012) 035203
- → pNb@ 3.5 Gev
 - [•] *"Σ0 production in proton nucleus collisions near threshold",* Phys.Lett. B781 (2018) 735-740
 - *"The Lambda-p interaction studied via femtoscopy in p + Nb reactions at sqrt(sNN)=3.18 GeV"* Phys.Rev. C94 (2016) no.2, 025201
 - *"Two-particle correlation measurements in p+Nb reactions √s(NN) = 3.18 GeV"*, J.Phys.Conf.Ser. 668 (2016) no.1, 012037
 - *"Subthreshold E- Production in Collisions of p(3.5..GeV)+Nb"*, Phys.Rev.Lett. 114 (2015) 212301

TABLE I. Theoretical predictions and experimental values for the radiative widths (in keV) for the transitions $Y \to \Lambda(1116)\gamma$ and
$Y \rightarrow \Sigma(1193)\gamma$. Some models have multiple predictions that depend on different assumptions. For comparison the predictions and experimental
value are quoted for the $\Delta(1232) \rightarrow p\gamma$ transition.

Model	Δ(1232)	$\Sigma^{0}(1385)$		Λ(1405)		Λ(1520)	
	рү	$\Lambda(1116)\gamma$	$\Sigma^0(1193)\gamma$	Λ(1116)γ	$\Sigma^0(1193)\gamma$	Λ(1116)γ	$\Sigma^0(1193)\gamma$
NRQM [3,4]	360 [14]	273	22	200	72	156	55
RCQM [5]		267	23	118	46	215	293
χCQM [6]	350	265	17.4				
MIT bag [3]		152	15	60, 17	18, 2.7	46	17
Chiral bag [7]				75	1.9	32	51
Soliton [8]		243, 170	19, 11	44,40	13, 17		
Skyrme [9,10]	309-348	157-209	7.7-16				
Algebraic model [11]	343.7	221.3	33.9	116.9	155.7	85.1	180.4
$HB\chi PT [12]^a$	(670-790)	290-470	1.4-36				
$1/N_c$ expansion [13]		298 ± 25	24.9 ± 4.1				
Previous experiments	640-720 [30]	<2000 [22]	<1750 [22]	27 ± 8 [19]	10 ± 4 [19]	33 ± 11 [17]	47 ± 17 [17]
					23 ± 7 [19]	134 ± 23 [16]	
						$159 \pm 33 \pm 26$ [18]	
This experiment		$479 \pm 120^{+81}_{-100}$				$167 \pm 43^{+26}_{-12}$	

^aThe results for HB χ PT [12] are normalized to the quoted empirical range (in parentheses) for the $\Delta \rightarrow p\gamma$ transition.

Data from previous experiments

- pNb @3.5GeV pp @
 - Sep 18 Oct 20, 2008
 - 7.7.109 events
 - Multiplicity \geq 3 trigger

Interesting final states:

- p π Λ (1116) candidates
- $\Lambda \pi^+ \pi^ \Lambda$ (1520) candidates
- $\Lambda \pi^+$ Σ^+ (1385) candidates
- $\Lambda e^+ e^- \Lambda$ (1520) candidates
- $\Lambda \pi$ Ξ (1322) candidates

- pp @3.5GeV
 - Apr 13 Apr 30, 2007
 - 3.109 events
 - Multiplicity \geq 3 trigger

Krzysztof Nowakowski

 E_{k} =4.5 GeV (\sqrt{S} =3.46 GeV) is 0.51 GeV over production threshold for $\Lambda(1520)$, what corresponds to $\Lambda(1115)$ production at \sqrt{S} =3.06 GeV. The cross section for this energy is equal <u>130 µb</u>

Bormio, 21-25.II.2019