DarkMESA – Light Dark Matter Search at the MESA Beam Dump

> Patrick Achenbach Univ. Mainz Jan. 2019

and Sebastian Baunack, Paul Burger, Mirco Christmann, Achim Denig, Luca Doria, Frank Maas & Harald Merkel

Dark Matter Properties

Matter content of the known Universe:

- Dark matter: ~23 %
- Dark energy: ~72 %
- Atomic matter: ~5 %
- Light neutrinos: ~0.1 %

Unknown DM properties:

- Weakly charged (WIMP) or not?
- E.-m. (milli?)-charged or not?
- Hidden sector existing or not?
- Portal existing or not?
- Darkly charged or not?
- Weak-scale mass or not?

Known DM properties:

- Gravitationally interacting
- Not short-lived
- Not hot
- Not baryonic

Early Universe Thermal DM Freeze-Out

WIMP Paradigm: If stable WIMPs exist, they are naturally produced with a relic density consistent with the one required of dark matter

Interactions in a Hidden Sector

- Hidden sector composed of particles without SM interactions
- Many forms of hidden interactions seem conceivable
- The simplest form is an electromagnetism analogue
- Disclaimer: A dark sector with set of hidden interactions

may seem an over-complicated solution to the dark matter problem

"Plurality must never be posited without necessity". William of Ockham: *Sentences of Peter Lombard* (1495)

Mediators between Sectors

- Vector, Higgs, neutrino mediators in many BSM constructions
- Mediator typically is unstable (and not DM)
- Some aspects of this idea are testable and amenable to observations
- SM coupling via kinetic or mass mixing or with direct coupling

$$\mathcal{L}_{mix} = -rac{\epsilon}{2} F^{QED}_{\mu
u} F^{\mu
u}_{dark}$$

DarkMESA - Light Dark Matter Search at the MESA Beam Dump

Jan. 2019 P Achenbach, U Mainz

The virtue of Dark Bremsstrahlung from Electrons

- A' carries away most of an electron's energy in the first reaction
- A' emitted in a narrow forward cone
- Recoil electron is soft, *i.e.* large missing energy
- Recoil electron at large angles, *i.e.* large missing momentum

Dark Bremsstrahlung is a simple way to get large DM yield

The MESA Accelerator in Mainz

Two main operation modes:

1. ERL operation: MAGIX experiment High beam currents, thin gas-jet targets

2. EB operation: P2 experiment High stability, thick targets, long runs, high luminosities, stable conditions

High-power beam dump
 Parasitic experiments

DarkMESA

The DarkMESA Concept

 $Y_{Prod} \sim \epsilon^2 / m_A^2$

 $Y_{Det} \sim \epsilon^2 \alpha_D / m_A^2$

Total yield: $Y_{TOT} \sim \epsilon^4 \alpha_D / m_A^4$

External Beam Extraction

Solenoid Spectrometer

larget

Beam energy ~ 147-155 MeV Beam current ~ 150 µA

P2 target: 60 cm liquid hydrogen

- 3 kW beam power loss
- 17 MeV beam energy loss
- 2° multiple scattering angle
- $-~e~p \rightarrow e~n~\pi^{\scriptscriptstyle +}$ threshold at 152 MeV

 $\land \Rightarrow$ No pion/muon/neutrino production

Detectors

Shielding

11

P2 experiment

External Beam Dumping

- Beam dumped after 12 m
- Beam energy ~ 130–138 MeV
- Beam power ~ 20 kW
- Lateral beam width ~ dump size
- Main absorber material: 20 X_o Al
- 10 000 h of operation:
 - ~ 3 x 10²² electrons
 - ~ 5400 C charge dumped

Model for A' Bremsstrahlung

- Radiative production of (massive) dark photon A' coupling with ϵ
- Subsequent decay to SM particle pairs with ϵ or dark matter pairs with α_D
- Assume dominant invisible decay channel $\Gamma(A' \to \bar{\chi}\chi)/\Gamma_{\text{total}} \simeq 1$ [Bjorken *et al.*, Phys. Rev. D80, 075018 (2009)]

Dark Matter Beam Properties

Example simulations for $m_{A'}$ = 10, 50 and 100 MeV/ c^2

Testing ground for DM production with 20 MeV « $m_{A'}$ « 120 MeV

Dark Matter Beam-Line

- 20 X_o beam-dump, 70 X_o (~ 8 m) barite concrete
- Total length of 23 m including several shielding walls
- Practically free of beam-related background

Dark Matter Detection

Elements of Detector Design

Ideal Requirements:

- 1. Large Surface (Acceptance)
- 2. Large thickness (Int. Prob.)
- 3. High density (Int. Prob.)
- 4. Reliability (long running time)
- 5. Background rejection
 - Cosmics
 - Natural Backgrounds
 - Beam Backgrounds

- 81 lead glass blocks
- $-30 \times 30 \times 150 \text{ cm}^3 = 11 \text{ m}^3$
- 274 x 274 cm² cross section
- Readout with 5 inch PMTs

Baseline Concept

Inorganic crystal calorimeter (high density)

- Cherenkov (fast, no neutrons)
- Scintillator (higher light yield)

Phased Approach

Phase 1

Phase 2

1000 (available!) PbF2 crys Volume: 1x1x0.13 m³ 5x5 crystal sub-modules 1200 kg mass

Addition of Pb-Glass blocks Volume: 1m³ 4100 kg mass

Reach maximum volume: O(10m³)

A4 Calorimeter Recycling

- 1022 PbF₂ crystals
- Volume 0.15 m³, 1.2 tons
- Density 7.77 g/cm³

Status:

- A4 calorimeter disassembled
- Crystals and PMTs in laboratory

Phase 1 calorimeter of DarkMESA

Projected Exclusion Limits from DarkMESA

Full simulation of DarkMESA

Three detector stages:

- Stage A: existing PbF₂ crystals (A4 - 0.13 m³ volume)
- Stage B: lead glass calorimeter (1 m³ volume)
- Stage C: lead glass calorimeter (11 m³ volume)

$$\alpha_{D} = 0.5; m_{\gamma} = 3 m_{\chi}; 3 \times 10^{22} \text{ EOT}$$

Dark matter mass m_{γ} (GeV/c²)

DarkMESA has the potential to touch the thermal relic targets!

Prototyping and Beam Tests

Investigated Crystals

Light Yield Position dependence PMT voltage scan

Measurements:

Input to Simulation

SF5 (Pb-Glass, Schott AG) SF6 (Pb-Glass, Schott AG) SF57HTultra (Pb-Glass, Schott AG) BGO (on loan from Frascati, L3-LEP) PbF₂ (from A4)

Jan. 2o19

P Achenbach, U Mainz

Development of a Veto System

Comics Veto System Multiple scintillator layers Lead / Neutron shielding

Background rejection:

- Use of beam on/off information:
 beam-time scheduling 50% / year
- Segmenting of detector read-out: coincidences eliminating noise
- Use of several layers of veto detectors

Crystal Array Available from A4:

PbF₂ crystals
PMTs

Key questions

- Signal properties
- Backgrounds

Conclusion

DarkMESA can contribute to DM searches

Ideal for *light* and *weakly coupled* particles:

- Very large number of electron on target
- Extremely stable beam conditions
- Very low backgrounds
- New infrastructure

with dedicated floor space for detector

Dark Photon thermal relic targets could be reached within a few years

Backup

Direct WIMP Searches

- Assuming $m_W \sim 100 \text{ GeV/c}^2$, $v \sim 10^{-3}c$:
- \rightarrow Ordinary matter recoiling with $E \sim 1-100$ keV from DM collisions
- → Typically ultra-sensitive detectors located deep underground
- WIMP hypothesis nowadays cornered
- Unexplored mass region < 1 GeV/ c^2

Small mass and small coupling can 10^{-48} reproduce correct relic density if 10-50 $m_{\chi}/g_{\chi}^2 \sim m_w/g_w^2$

Light Dark Matter with large self-interaction and small SM coupling possible

- Photon-like couplings
- If 2 $m_X < m_{A'}$ and not too small α_D : invisible decays into DM pairs
- Else if kinematically allowed: visible decays to ee, $\mu\mu$, $\pi\pi$, ...

•	Dark Bremsstrahlung:	$eZ \rightarrow eZA'$	electron beam dump
	Annihilation:	$ee \rightarrow \gamma A'$	electron-positron collider
•	Dark Bremsstrahlung:	$pZ \rightarrow pZA'$	proton beam dump
	Drell-Yan process:	$qq \rightarrow A'$	proton beam
	Meson decay:	$\pi \rightarrow \gamma A'$ etc.	proton beam

Searches with Collider and Beam Dump Experiments

Colliders (visible/invisible decays)

- B-Factories (BaBar/Belle II)
- LHC experiments

- Beam dumps (invisible decays)
- BDX@Jlab, DarkMESA
- Proton beam dumps, re-analyses

Meson decays

Recent Constraints from NA64

raw tube chambers

100 GeV electron beam at CERN Missing energy experiment Decay volume Vacuum target **S**2 vessel 4.3 x 10¹⁰ electrons on target [NA64, Phys. Rev. D 97 (2018)] HCAL Veto HCAL veto ECAL Micromegas K[±], 40-100 GeV 10^{-2} Magnet E787, E949 $a_{\prime\prime}$ BaBar a_{μ} favored 10^{-3} Invisible decay exclusion limits Ψ NA64 10^{-4} Extending to $< 10^{-4}$ for masses of 10 MeV 10^{-5} 10^{-2} 10^{-3} 10^{-1} 101 $m_{A'}, GeV$

Recent Constraints from BaBar

BABAR Detector

e+e- collider at B-factory **Muon/Hadron Detector** missing energy and Magnet Coil Electron/Photon Detector missing momentum **Cherenkov Detector** Tracking Chamber 53 fb⁻¹ from $\Upsilon(nS)$ Support Tube Vertex Detector [PRL 119, 131804 (2017)] e 10⁻² $K \rightarrow \pi v v$ $(g-2) \pm 2\sigma$ **BABAR 2017** favored Invisible decay exclusion limits ^ω 10⁻³ (g-2) Extending to 10⁻³ at masses < 1 GeV NA 64 10 10^{-2} 10⁻³ 10⁻¹ 10 m_{A'} (GeV)

Proposal for BDX@JLab

 A^\prime Production in Target

DM Scattering in Detector

800 recycled *BaBar* crystals
 Volume: ~ 0.5 m³

Signal: shower with $E_{thr} \sim 300 \text{ MeV}$

- JLab PAC approval
- Funding & schedule unclear

spokesperson: Marco Battaglieri

Particle Production in Beam Dump

Energies available for Dark Photon Bremsstrahlung

- Shower maximum within first X_o
- On average only ~ 3 charged particles per beam electron
- On average only ~ 1 hard photon emission per beam electron

Complementary energies to all other beam dump experiments