CRISTIANO GALBIATI 57TH INTERNATIONAL WINTER MEETING ON NUCLEAR PHYSICS BORMIO, JANUARY 24, 2019

THE GLOBAL ARGON DARK MATTER COLLABORATION AND ITS PHYSICS PROGRAM

THE SCIENCE PERSPECTIVE

- The two dark entities dominating the Universe, dark matter and dark energy, do not fit in the Standard Model
- Two big open questions at the intersection of particle physics and cosmology

ArDM DarkSide DEAP MiniCLEAN

The Global Argon Dark Matter Collaboration

350 COLLABORATORS

ITALY, US, CANADA, BRAZIL, CHINA, FRANCE, GERMANY, POLAND, RUSSIA, SPAIN, UNITED KINGDOM

..... LUX 2017 PICO-60 2017 CDMSLite 2017 PandaX-II 2016 **DAMIC 2016** CRESST-II 2015 CDMSlite 2014 CDMS 2013 DAMA/LIBRA 2008

6 7 8 9 10 5 4 M_{χ} [GeV/c²]

Liquid Argon TPC 153 kg ³⁹Ar-Depleted Underground Argon Target

4 m Diameter 30 Tonnes Liquid Scintillator Neutron Veto

10 m Height 11 m Diameter 1,000 Tonnes Water Cherenkov Muon Veto

Liquid Argon TPC 153 kg ³⁹Ar-Depleted Underground Argon Target

4 m Diameter 30 Tonnes Liquid Scintillator Neutron Veto

10 m Height 11 m Diameter 1,000 Tonnes Water Cherenkov Muon Veto

DARKSIDE-50

- P. Agnes et al. (The DarkSide Collaboration), "DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon", arxiv:1802.07198.
- P. Agnes et al. (The DarkSide Collaboration),
- arxiv:1802.06994.

"Constraints on Sub-GeV Dark Matter-Electron Scattering from the DarkSide-50 Experiment", arxiv:1802.06998.

• P. Agnes et al. (The DarkSide Collaboration), "Low-mass Dark Matter Search with the DarkSide-50 Experiment",

(2018)081307 121 Letters Review **Г**С U **Phys**.

Acceptance

(2018 081307 21 **C L S** ew Revi а П \mathbf{C} Phys.

day X kg X [Ne GD ₹ N

3

FIG. 1 (color online). A schematic of the experiment setup. θ_1 is the neutron production angle and θ_2 is the scattering angle. The inset shows a zoomed-in view of the TPC including the PMTs, field shaping rings and PTFE support structure. It does not include the inner reflector.

201 1302 ew Rev

Background prediction and Unblinding

Mass	1.3t	1.
(S2, S1)	Full	Refer
ER	627±26	2.2±
Neutron	1.4±0.6	0.8±
CENNS	0.05±0.02	0.02
AC	0.47±0.15	0.10=
Surface	106±11	5.4±
BG	736±28	8.4
Data	739	1
WIMPs best-fit (200GeV)	3.36	1.

3t rence ±0.1 ±0.3 £0.01 ±0.03 ±0.5 -0.6 55

- Reference region is defined as between NR median and NR -2sigma
- ER is the most significant background and uniformly distributed in the volume
- Surface background contributes most in reference region, but its impact is subdominant in inner R
- Neutron background is less than one event, and impact is further suppressed by position information
- Other background components are completely sub-dominant
- Numbers in the table are just for illustration, statistical interpretation is done based on profile likelihood analysis

~1.5 - 6.5 keV, single scatters, no coincident veto

Background Source

Detector Components

Dispersed Radionuclides — Rn, Kr,

Laboratory and Cosmogenics

Surface Contamination and Dust

Physics Backgrounds — 2β decay, ne

Total (after 99.5% discrimination and

j.dobson@ucl.ac.uk — UCLA DM — 02/23/18

5.6 ton fiducial, 1000 live-days

	ERs	NRs	
	9	0.07	
, Ar	816		
	5	0.06	
	40	0.39	
eutrinos*	322	0.51	
50% NR efficiency)	6.48		
	* not including ⁸		

f₉₀

200

+Veto

(2018)102006 **0**0 Α Review hysical

f₉₀

+r<10 cm && 50% loss S2/S1 cut (70d)

14

f₉₀

+r<10 cm && 50% loss S2/S1 cut (70d)

14

THE DARKSIDE-20K PROJECT

€90M

- Capital funding by IT INFN, US NSF
- Capital funding requests to CAN CFI, UK STFC in 2019
- Strong synergies with LAr programs at FNAL and BNL
- RE-37 at CERN

- UAr extracted from CO₂ well gas at the tonne scale **Focus of this talk**

 \bullet

Purification: Aria

(see M. Simeone's talk for details)

350 m tall cryogenic distillation column to purify UAr and isotopically separate argon and other elements Located in refurbished carbon mine shaft in Sardinia, Italy Will chemically purify the UAr for DS-20k to detector grade

Enter the Age of Urania

OVERVIEW:

In- and Outlet VCR of the Chamber
ArDM Top Flange (CERN Version)
4 x Pillars Flange to PMT Array
Top PMTs Array (6 PMTs)
5 x Pillars e.g.Cu
Dart Chamber Centered in the Volume
SS rings for Vertical Relfector fixing

Bottom PMTs Array

THE END

