RECENT HIGHLIGHTS FROM THE CMS EXPERIMENT

Greg Landsberg Bormio, Italy, 21/1/19

57th Winter Meeting on Nuclear Physics

LHC Performance: Three Machines in One 30,000 Feet Highlights:

- Standard Model Measurements
- Searches for New Physics

Conclusions: Quo Vadis?

- Disclaimer: these are highlights of just a few of a large number of CMS results, with clear personal bias: they tell a story, rather than simply make up a shopping list...
- For the full physics analysis landscape in CMS, please refer to:
 - http://cms-results.web.cern.ch/cms-results/public-results/publications/
 - http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/ index.html
- P.S. And just because I am the first LHC speaker, it doesn't mean that things I'll be describing are unique to CMS - in fact you will hear about many exciting results from ALICE, ATLAS, and LHCb later this week!

The LHC Legacy

LHC Run 2 - Big Success

CMS Integrated Luminosity, pp, 2018, $\sqrt{s} = 13$ TeV

- 160/fb has been delivered by the LHC in Run 2 (2015-2018), at a c.o.m. of 13 TeV, exceeding the integrated luminosity projections
- Over 140/fb of physics quality data recorded
 - Thank you, LHC, for a spectacular run!

4

Three Machines in One!

The LHC Legacy

- The LHC has figuratively replaced three machines in one go:
 - Tevatron (Higgs, BSM searches, top physics, and precision EW measurements)
 - BaBar/Belle B factories (precision B physics)
 - RHIC (heavy-ion physics)
- The LHC experiments in general, and CMS in particular, are very successful in all these three areas
- Would not be possible without theoretical and phenomenological breakthroughs of the past decade:
 - Higher-order calculations ("NLO revolution"), modern Monte Carlo generators, reduced and better estimated PDF uncertainties
- Since it's impossible to cover all the aspects of this impressive program in one talk, I'll present a few highlights of recent CMS results in Higgs physics, SM physics, flavor physics, heavy-ion physics, and the discovery program, with the focus on the latter

6

Challenge: Big Data

- The amount of data produced by CMS is truly enormous: over 10 PB/year
- It takes some time to fully calibrate and align the CMS detector, and then reconstruct the data with the best possible calibrations
- As a result, most of the results presented in these talk are based on 2016 data, with a few also including 2017 data
- First results on the full Run 2 dataset at 13 TeV will be available by the 2019 Moriond conferences (~2 months)
 - Impressive, given that the 2018 run ended just 2 months ago!
- Overall, a very fast turn-around compared to earlier generations of HEP experiments!

Publish or Perish!

 As of today, we have submitted 849 pairs based on collision data over a hundred/year!

00

Challenge: Pileup

Every event is nearly as busy as a heavy-ion event!

- Average number of simultaneous interactions per bunch crossing (pileup, PU) was 32 in the latest, 2018 run
 - This exceeds the original LHC design PU number of 20
- Developed sophisticated tools to mitigate the effects of the PU: particle-flow reconstruction, MVA techniques

ດ

Challenge: Pileup

Every event is nearly as busy as a heavy-ion event!

- Average number of simultaneous interactions per bunch crossing (pileup, PU) was 32 in the latest, 2018 run
 - This exceeds the original LHC design PU number of 20
- Developed sophisticated tools to mitigate the effects of the PU: particle-flow reconstruction, MVA techniques

ດ

Higgs Physics Highlights

- LHC is the Higgs factory
- At 13 TeV, the production cross section for the Higgs boson, dominated by gluon-gluon fusion, is ~50 pb
 - 8M Higgs bosons delivered by the LHC in Run 2!
 - By now ATLAS and CMS could have accumulated as many Higgs bosons as four LEP experiments accumulated Z bosons
- But: triggering is a big challenge:
 - Most of gg → H(bb) events were never put on tape, which is how half of the Higgs bosons are produced and decay
- Need to pursue aggressive triggering strategies and go for lower cross section production mechanisms to observe all possible Higgs boson decays and couplings

Standard Model Higgs Boson

- The properties of the SM Higgs boson are completely defined, once its mass is known
- Four production mechanisms: gluon fusion (ggF, a); vector boson fusion (VBF, b); associated production with a vector boson (VH, c) or a top quark pair (ttH, d)
 - N.B. Tour de force state-of-the-art theoretical work in calculating cross sections

2

Higgs Boson Decays

Decays circled in red have not been observed yet -13% of the "pie" is still missing!

Decays of a 125 GeV Standard-Model Higgs boson

TOUR DE FORCE

THE TRUMPETS OF ROY ELORIDGE . DIZZY GILLESPIE AND HARRY EDISO

Top/Bottom Yukawa

Couplings

Observation of ttH Production

- Last April, CMS reported first observation of ttH production
 - Tour de force analysis, combining multiple channels (bb, $\tau\tau$, $\gamma\gamma$, multileptons), as well as 7, 8, and 13 TeV data
 - 5.2σ (4.2σ) observed (expected) significance, benefiting from an excess seen in Run 1 data
 - $\mu = \sigma_{exp}/\sigma_{th} = 1.26^{+0.31}-0.26$, in agreement with the SM

Observation of the H(bb) Decay

- Ironically, the dominant decay mode of the Higgs boson was the hardest to observe!
 - Took ATLAS and CMS over 6 years to publish first observation of the H(bb) decay
- Despite the large branching fraction, the dominant production mode is swamped by overwhelming QCD background
- Until recently the only viable channels were VH
 - But: there is a hope for observing H(bb) in ggF (see later) and even ttH(bb), as evident from the first ttH signal observation

Observation of H(bb)

- Another tour-de-force analysis, using multiple event categories and MVA techniques, as well as advanced b tagging algorithms
 - Includes 2011, 2012, 2016, and 2017 data sets
 - The signal is evident in the b-tagged dijet mass distribution, weighted by the S/(S+B) ratio
 - Observed (expected) significance: 5.6σ (5.5σ)

Towards ggF H(bb)

- Novel idea based on significant recent progress in the jet substructure techniques, allowing to reconstruct Lorentzboosted Higgs bosons via a single, large-radius jet with the mass consistent with that of the Higgs boson
- ◆ Since jet mass generally depends on jet p_T (due to Sudakov double-logs, cf., e.g., "Sudakov Peak"), need to additionally decorrelate jet substructure variables from jet p_T
- Turns out that QCD backgrounds for high-mass large-radius jets are actually smaller than for the resolved topology, which provides a powerful method to look for low-mass resonances, e.g., the Higgs boson
- Additional use of b tagging techniques to see whether the jet is consistent with originating from a pair of b quarks, allow to maximize the sensitivity of this search

H(bb) in Boosted Channel

- First results are very promising: achieved ~1σ sensitivity w/ 2016 data alone
 - Finalizing the analysis on a full Run 2 data set now
- Ultimately would like to probe the H(gg) decay, which can't be seen otherwise at a hadron collider

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-14 18:37:44.420271 GMT(19:37:44 CEST) Run / Event: 151076/1405388

Heavy lon Highlights

Light-by-Light Scattering

Use ultraperipheral PbPb collisions to turn the LHC into a photon-photon collider!

• Photon flux is enhanced by $Z^4 = 5 \times 10^7$ due to coherence!

 σ_{fid}(γγ → γγ) = 120 ± 46 (stat.) ± 28 (syst.) ± 4 (th.) nb, in
 agreement with the prediction of 138 ± 14 nb for m_{γγ} > 5 GeV

arXiv:1810.04602

CMS

- Observed (expected) significance of 4.1σ (4.4σ)
- Also interpreted as limits on axion-like particles via

Pb

Pb^(*)

Pb^(*)

5

B_s **Production in PbPb**

- First observation of B_s production in heavy-ion collisions (PbPb) and a measurement of the differential cross section and a nuclear modification factor R_{AA}
 - B_s mesons are reconstructed via an exclusive J/ $\psi(\mu\mu)\phi(KK)$ decay
 - Multivariate analysis techniques are used to extract signal in PbPb collisions
- The R_{AA} is enhanced at 2σ level relative to that for the B⁺ mesons, consistent with theoretical predictions of enhanced strange quark production in hot nuclear medium due to recombination processes
 CMS arXiv:1810.03022

22

Beauty Suppression in PbPb

CMS 38.1 nb⁻¹ (5.02 TeV pp) + 70.5 μb⁻¹ (5.02 TeV PbPb) 6<p₁<7 GeV/c lyl<1 Lise appropriate an an anti-transmission of the tag peauty in the proprieties of the tag peauty is the tag and MeV/c⁴ Detette D⁰ mesowerpeek π decays and require and \mathfrak{B} Beasure nuclear modification factor as a function of D⁰ p_T * 7400 measured RAA is higheethan for prompt D⁰ mesons of generic charged $\frac{1}{200}$ badrons for $p_T < 10$ GeV, consistent with the quark mass ordering of the ^Ⅲ suppression in QGP

+ X: Yux X3\$ the + D. g/2 - V(6) **Standard Model** Highlights

1 = -== Fm F~

+ iFDy +he

"Stairway to Heaven"

Mind-boggling precision on so many SM processes!

"Stairway to Heaven"

Mind-boggling precision on so many SM processes!

25

Vector Boson Measurements

- Precision of diboson measurements broke the 10% threshold in a number of channels; in some it even rivals the precision of NNLO calculations
- For the first time entering the territory of precision probing of VBF/ VBS and quartic vector boson couplings
- Most precise limits on triple gauge boson couplings, surpassing both LEP and the Tevatron

26

Differential Drell-Yan Cross Section

- New, high-precision measurement of the differential do/dm DY cross section at 13 TeV in the 15-3000 GeV mass range
 - Uncertainties are as low as a few percent!
 - Excellent agreement with the state-of-the-art NNLO QCD + NLO EW predictions, including photon-induced contributions

00 70

W+c Production

Top Physics Highlights

Observation of tZq Production

- Interesting SM process sensitive to contributions from new physics, including FCNC interactions
- Highly optimized analysis in the Z(ll) channel, based on 2016 & 2017 data, with three event categories defined by the number of jets and btagged jets, with MVA selection in each category
 - Observed (expected) signal significance: 8.2σ (7.7σ)
- Measured fiducial cross section: $\sigma(pp \rightarrow tZq \rightarrow t\ell^+\ell^-q) = 111 \pm 13 \text{ (stat)}_{-9}^{+11} \text{ (syst) fb}$
 - Agrees w/ theoretical prediction of 94.2 ± 3.1 fb

Top Quark Mass, σ , α_s

- Clever alternative way of extracting top quark mass and α_s from a precision measurement of top quark pair production cross section in the dilepton channel
 - Use MS scheme and NNLO PDFs and accuracy to simultaneously extract α_s and m_t from subscription, taking into account correlation with PDFs
 - ${\ensuremath{\, \bullet }}$ Using $m_{lb}{}^{min}$ as a variable sensitive to $m_t,$ get:

 $\sigma_{\mathrm{t}\overline{\mathrm{t}}} = 815 \pm 2 \,\mathrm{(stat)} \pm 29 \,\mathrm{(syst)} \pm 20 \,\mathrm{(lumi)} \,\mathrm{pb},$

 $m_{\rm t}^{\rm MC} = 172.33 \pm 0.14 \,({\rm stat}) \,{}^{+0.66}_{-0.72} \,({\rm syst}) \,{\rm GeV}.$

B Physics Highlights

Study of Excited B_s States

 New analysis based on 2012 data @ 8 TeV studying p-wave, in particular B_{s1} (j_s = 3/2, J^P = 1⁺), B*_{s2} (j_s = 3/2, J^P = 2⁺) [observed by CDF, D0, and later LHCb]

- First observation of $B^*_{s2} \rightarrow B^0K_{s^0}$ is observed for the first time with 6.3 σ significance; a 3.7 σ evidence for $B_{s1} \rightarrow B^{*0}K_{s^0}$ is also seen
- The following branching fraction ratios were measured:

34

Slid

Bormio 2019

Observation of a Rare Z Decay

0 = 0 + 1 + 1 + 0 = -1

Observation of χ_{bJ} (3P)

- First observation of excited, 3P χ_{bJ} states, J = 1, 2 via Y(3S)γ
 decays using 2015-2017 data
- Detect low-p_T photons using conversions into e⁺e⁻ pairs
- Achieved an unprecedented 5 MeV resolution in mass, and measured mass difference to be: ΔM = 10.60 ± 0.64 ± 0.17 MeV

SUSY Searches

Brandeis - Fall 2018

BSM Searches -

New Ideas in

Greg Landsberg -

8000

Slide

Supercemetery?

At first glance, the TeV scale SUSY is simply not there: strongly produced superpartners of gluons and quarks, gluinos and squarks, have been excluded to ~2 and ~1 TeV, respectively...

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise

ntities ΔM and x represent th and the LSP relative to ΔM .

Read the Fine Print!

Keep in mind that:

- Searches typically assume 100% branching fraction in a particular channel
- Many searches assume mass degeneracy between various SUSY particles, e.g., squarks of different generation
- Interpretation is usually done via simplified model framework, not in the full model

Read the Fine Print!

Keep in mind that:

- Searches typically assume 100% branching fraction in a particular channel
- Many searches assume mass degeneracy between various SUSY particles, e.g., squarks of different generation
- Interpretation is usually done via simplified model framework, not in the full model

Pulling all the Stops!

- Top quark partner ("stop") is expected to be light, if SUSY offers a natural solution to the hierarchy problem
 - Not surprisingly, a lot of effort went into top squark searches
- With the top squark masses excluded as high as ~1 TeV, a paradigm shift in filling gaps at low masses, via challenging 3- and 4-body

6 0

Search for 4-body Stop Decays

Require at least one soft lepton $(30 > p_T > 3.5-5 \text{ GeV})$ and a hard ISR jet to aid the efficiency and triggering

Fall 2018

Brandeis -

BSM Searches

Search for Light Top Squarks

- A particularly challenging case is when the mass of the top squark is nearly degenerate with the sum of the top quark and neutralino masses: $(m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \simeq m_t)$
- In this case the neutralino is produced nearly at rest and not being detected, does not contribute to the missing transverse momentum
 - Consequently, the process looks just like top quark pair production!
- The new analysis in the dilepton channel looks for an excess of events above the dominant background using shape differentiation offered by an M_T -like variable (M_{T_2}) CMS arXiv:1901.01288

Exotica Searches

Greg Landsberg - New Ideas in BSM Searches - Brandeis - Fall 2018

44

Slide

Shift of Paradigm

- At first, we were looking at the highest masses, which opened up due to record high machine energy
- These are low-background searches, but only sensitive to large couplings
- Last few years marked a shift in paradigm: we are going for highbackground, experimentally challenging searches for low couplings and low masses - something that earlier machines may have missed!

- Bormio 2019

om CMS

Low Mass Dijet Analysis

- Use ISR to trigger, similar to the H(bb) search and look for resonances in the jet mass
- Allows to lower the dijet mass reach to 50 GeV, as demonstrated with the W/Z peak observation in CMS
- Goes well beyond the only available 30-year old UA2 limits in terms of mass reach and couplings!

Low-Mass bb Dijet Search

 $m_{z'}$ [GeV]

- Likely the last search analysis based on 2012 data
- Uses dedicated b-tagged trigger, allowing for the first time to probe bb masses below the tt threshold 19.7 fb⁻¹ (8 TeV)

46

Recent Results from CMS - Bormio 2019

Greg Landsberg

Search for Z' in Z \rightarrow 4 μ decay

- Search for Z' with preferential coupling to q second-generation particles, suggested as possible explanation of b → sµµ flavor anomalies
- Based on the H(ZZ) → 4µ analysis, using 2016+2017 data
 - Closed significant fraction of the allowed parameter space in the L_μ - L_τ models

CMS: Z→Z'uu→4u (obs.)

···· CMS: Z→Z'µµ→4µ (exp.)

Constraints from Altmannshofer

et al .IHEP12(2016) 106

BR(Z \rightarrow 4µ), $\sqrt{s} = 7$ and 8 TeV

m(Z')[GeV]

Neutrino Trident

B. mixing

 10^{2}

σ

 10^{-1}

 10^{-2}

CMS

2016

2017

YWWWWWWWW

10

Long-Lived Particles

- Continuing with a quest for small couplings, at certain point weakly-coupled particles become long-lived and can decay in the middle of the detector
- Requires considerably different experimental techniques and often dedicated triggers to look for such signatures

48

Search for Displaced Jets

10

10²

10³

 $C\tau_0$ [mm]

- CMS search based on dedicated triggers requiring at least two jets with low number of prompt tracks
 - Special MVA displaced jet tagging based on the angular and displacement information for the tracks (e.g., 2D IP_{sig})
- Offers high sensitivity to objects decaying into a pair of non-prompt jets, as QCD background is small

600

0.5

1.5

2.5

 $\log_{10} (c\tau_0/mm)$

Dark Matter Searches

"Maverick Dark Matter at Colliders" arXiv:1002.4137 (299 citations)

ц С

Dark Matter Interactions

- Early DM searches: EFT based
 - Since then understood the fundamental limitations of EFT and moved to simplified models
- Moving away from EFT allows for a more fair LHC vs. DD/ID experiments comparison and emphasizes the complementarity of the two approaches

52

Combined monojet and mono-V(jj) (boosted) analysis

Probes scalar and pseudoscalar mediators, in addition to (axial) vector

(Axial) Vector

(Pseudo) Scalar

53

Bosonic *a*

(Pseudo) Scalar

 $\mathcal{L}_{\text{scalar}} \supset -\frac{1}{2}m_{\text{MED}}^2 S^2 - g_{\text{DM}}S\overline{\chi}\chi - g_{\text{q}}\sum_{q=b,t}\frac{m_q}{v}S\overline{q}q - m_{\text{DM}}\overline{\chi}\chi,$

 $\mathcal{L}_{\text{pseudoscalar}} \supset -\frac{1}{2}m_{\text{MED}}^2 \mathbf{P}^2 - ig_{\text{DM}}\mathbf{P}\overline{\chi}\gamma^5\chi - ig_{\text{q}}\sum_{v}\frac{m_{\text{q}}}{v}\mathbf{P}\overline{\mathbf{q}}\gamma^5\mathbf{q} - m_{\text{DM}}\overline{\chi}\chi,$

Fermionic

- Combined monojet and mono-V(jj) (boosted) analysis
- Probes scalar and pseudoscalar mediators, in addition to (axial) vector

53

Monojets: the Classics

CMS Monojet/Mono-V Analysis

The latest Run 2 analysis is built on the Run 1 techniques

- Combines "massless" (monojet) and massive (mono-W/Z) jets
- State-of-the-art treatment of NLO EW/QCD corrections to SM V+jets processes, after Lindert et al., arXiv:1705.04464

55

56

Slide

DM Interpretation

Mono-Higgs Search

 Newly discovered Higgs boson could be produced in association with DM! Looking for the dominant decay mode: H(bb) (+ MET) By far most restrictive limits on the model to date, even despite a slight excess observed **CMS** 35.9 fb⁻¹ (13 TeV ∑¹²⁰⁰ ⊕ ⊕ 1100 10^{2} Observed (fb) **OI** categories Expected (dd XX ± 1 std. deviation E 1000 -..-.. \pm 2 std. deviation⁻ .02826 10 Z'-2HDM Ah 900 $\dot{q} = 0.8$ g**ı**= 1 arXiv:1807 800 $tah \beta = 1$ upper limit on $\sigma(Z') B(Z')$ m,= 100 GeV 700 m_₄=m_µ=m_µ 600 CMS 10⁻¹ 500 CMS 2016 400 10⁻² 300 4000 3000 3500 1500 2000 2500 95% 1000 $m_{Z'}$ (GeV)

50

Searches for a Mediator

Big Picture: LHC vs. DD

- Axial vector mediators
 - No resonant enhancement due to spin-dependent cross section
 - Colliders typically win over the DD experiments up to a few hundred GeV DM masses

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV#Dark Matter Summary plots

61

Greg Landsberg - Recent Results from CMS - Bormio 2019

62

Slide

Big Picture: Spin 0

For the first time started probing spin-0 mediators

Greg Landsberg - Recent Results from CMS - Bormio 2019

62

Slide

Big Picture: Spin 0

For the first time started probing spin-0 mediators

Future Run 2 Searches

- Parton luminosity arguments shaped the searches program in 2015-2018:
 - Look for high-mass singly or pair-produced objects:
 - Gluinos, squarks (SUSY)
 - Z', W', dijet, tt, and diboson resonances, vector-like quarks, leptoquarks, black holes (Exotica)
- The situation has finally changed after 2016, since the data doubling time from now on for the first time would exceed 1 year, approaching a "lifetime" of a graduate student in CMS
- Expect more sophisticated searches in complicated final states that haven't been explored before, using advanced analysis techniques, ISR and VBF probes, etc.
- The LHC searches are moving away from the lampposts (both theoretical and experimental) and enter really unprobed territory

63

Conclusions: Quo Vadis?

- LHC is an amazing machine, with a spectacular performance by far exceeding the expectations, despite a few birth pains
- Discovery of the Higgs boson in 2012 has completed the standard model of particle physics and paved an avenue to decades of exploration
 - Cf. the richness of top quark physics now, nearly a quarter century after the discovery!
- Precision standard model measurements, supported by the latest theory developments continue to be very exciting and important
- Direct searches for new physics have unexpectedly failed so far, but not for the lack of trying!
 - Redirect searches away from theoretical lampposts, and toward challenging signatures and most sophisticated analysis techniques
 - If all fails: LHC will do for dim-6 operators what LEP did for the SM dim-4 ones (SMEFT approach)!

 It's too early to throw a towel in: there are still hints for BSM physics (e.g., in the flavor sector) and we will follow up on them diligently

Stay tuned for many new results from full Run 2 data later this year!

64

NON SEQUITUR

Thank You!