Search for new decay modes in neutron-deficient silicon isotopes

Aleksandra Anna Ciemny

Nuclear Physics Division, Faculty of Physics, University of Warsaw

57th International Winter Meeting on Nuclear Physics Bormio, 22.01.2019

NUCLEAR PHYSICS DIVISION FACULTY OF WARSAW

Ministry of Science and Higher Educatio Republic of Poland

Introduction - radioactivity at the proton drip-line

- Large Q_{β^+} value
- Population of highly excited (particle unbound) states
- β-delayed (multi-) particle emission (βx)
- **Competition** with β - γ decay
- βx spectroscopy crucial for understanding nuclear structure
- ^{22,23}Si a variety of rare β-delayed decay modes expected

source: http://www.nndc.bnl.gov/chart/

Introduction - ²²Si

- First observation in 1987, in ³⁶Ar fragmentation reaction.
 First T_z = -3 nucleus observed
- βp identified and energy spectrum measured in 1996
- β 2p from IAS reported in 2017:
 - charged-particle group @ 5600(70) keV
 BR = 0.7(3)% (5 events)

M.G. Saint-Laurent et al., PRL 59, 33, 1987 B. Blank et al., PRC 54, 572, 1996 X.X. Xu et al., PRL B 766, 312-316, 2017

- First identification in 1986, ⁴⁰Ca fragmentation on Ni target
- Lightest of the $T_z = -5/2$ series (²³Si, ²⁷S, ³¹Ar ...)
- 10 years later βp (BR = 71%) and β2p (BR = 3.6%) channels observed

Experimental setup

- March 2017: ^{22,23}Si ions produced @ the Cyclotron Institute, Texas A&M University and separated from other fragments by MARS spectrometer
- Ions implanted into the Warsaw Optical Time Projection Chamber (OTPC)

Identification

- Clean beam with minimal amount of contaminants
 Ions identified on basis of:
 - range in OTPC gas (69% He + 29% Ar + 2% CF₄)
 - energy loss in Si detector

- Around 60 well implanted ²²Si ions
- Above 6k well implanted ²³Si ions
- $T_{1/2}$ values of ion groups compatible with literature

Optical Time Projection Chamber

OTPC - details: A.A. C. et al., Eur. Phys. J. A 52, 89, 2016 See also poster by N. Sokołowska

Optical Time Projection Chamber

Reconstruction of the 3D tracks in the OTPC detector:

- CCD camera picture = xy-plane
- PMT = signal in time
- Known drift velocity \rightarrow z-coordinate
- Range in gas \rightarrow energy!

Results - ²²Si

- Around 60 correctly implanted triggering ²²Si ions
- Much more of them stopped at the end of the chamber
- BR(β1p)≈100% (vs 30% in lit.)
- β2p emission observed
 (2 events)

Results - ²³Si

- Above 6k well implanted ²³Si ions in the "pure" group
- Branching ratios:

Results - ²³Si - β 3p emission

- First observation of β 3p decay of ²³Si
- BR(β 3p) = 0.05(3)%
- $4^{th} \beta 3p$ emitter identified by OTPC group

A.A. C. et al., Progress in Research (01.04.2017-31.03.2018) Cyclotron Institute, Texas A&M University, College Station, TX, USA, p. IV-67 (2018)

^{22,23}Si studied @ TAMU

- Decays observed with OTPC
- β p and β 2p from ²²Si
- β p and β 2p from ²³Si
- β3p emission from ²³Si identified for the first time!
- To do: Bragg curve fitting → proper particle energy spectra for observed decay channels

Stay tuned!

C. Mazzocchi¹, W. Dominik¹, A. Fijałkowska^{1,2}, J. Hooker³, C. Hunf³,
Z. Janas¹, Ł. Janiak¹, H. Jayatissa³, G. Kamiński⁴, Y. Koshchiy³,
M. Pfützner¹, M. Pomorski¹, B. Roeder³, G. Rogachev³,
A. Saastamoinen³, N. Sokołowska¹, S. Sharma¹

¹ Faculty of Physics, University of Warsaw, Poland
 ² Department of Physics and Astronomy, Rutgers University, New Jersey, USA
 ³ Texas A&M University, College Station, TX, USA
 ⁴ Joint Institute for Nuclear Research, Dubna, Russia

...and thank you for your attention!

β 3p gallery and other nice pictures

K. Miernik et al., PRL 99 (2007) 192501
M. Pomorski et al., Phys. Rev. 83 (2011) 014306
A.A. L. et al., Phys. Rev. C 91, 064309 (2015)