#### News from the "Proton Radius Puzzle"

#### Randolf Pohl

#### Johannes Gutenberg-Universität Mainz Institut für Physik, QUANTUM und Exzellenzcluster PRISMA+

#### before: Max-Planck Institute of Quantum Optics, Garching









Bormio Jan. 22, 2019

#### The "Proton Radius Puzzle"

Measuring  $R_p$  using electrons: 0.88 fm (+- 0.7%) using muons: 0.84 fm (+- 0.05%)



μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)



μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

### A "Proton Radius **Puzzle**" ??



#### **Electron scattering**

#### Mainzer Microtron MAMI



#### **Electron scattering**



Mainz MAMI data 2010

Vanderhaeghen, Walcher: 1008.4225

# Hydrogen



$$E_n \approx -\frac{R_\infty}{n^2}$$

1

#### Bohr formula



1

Rydberg constant



Bohr formula



3S ----- 3D

2S — 2P

Rydberg constant

$$E_n = \frac{R_{\infty}}{n^2} + \frac{1.2 MHz}{n^3} \langle r^2 \rangle \delta_{l0} + \Delta(n,l,j)$$





RP et al., Metrologia 54, L1 (2017)



RP et al., Metrologia 54, L1 (2017)

A proton, orbited by a **negative muon**.

# Electronic and muonic atoms

Regular hydrogen:

Proton + Electron



Muonic hydrogen:

Proton + Muon

Muon mass = 200 \* electron mass

Bohr **radius** = **1/200** of H

200<sup>3</sup> = a **few million times** more sensitive to proton size

muon

Vastly not to scale!!



18 -





2S state:  $\mu$  spends some time **inside** the proton! State is sensitive to the proton size.



2S state:  $\mu$  spends some time **inside** the proton! State is sensitive to the proton size.



**1**S

2S state:  $\mu$  spends some time **inside** the proton! State is sensitive to the proton size.

#### The accelerator at PSI



#### The accelerator at PSI



#### The accelerator at PSI



#### The accelerator at PSI PAUL SCHERRER INSTITUT Schaffhausen Baser 0 an Villigen, AG caller Luzer Neuchate Davos usanne St. Moritz Gen Lugano latterhoi

#### The muon beam line in $\pi E5$



# The laser system



Yb:YAG Disk laser  $\rightarrow$  fast response on  $\mu$ 

Frequency doubling (SHG) → green light to pump Ti:sapphire laser

Ti:sapphire cw laser

 $\rightarrow$  determines laser frequency

Ti:sapphire MOPA

 $\rightarrow$  high pulse energy (15 mJ)

Raman cell

ightarrow 3 sequential stimulated Raman Stokes shifts Laser wave length ightarrow 6  $\mu$ m

**Target Cavity** 

 $\rightarrow$  Mirror system to fill the muon stop volume (H<sub>2</sub>)

### The hydrogen target



#### 2 transitions in muonic H



# Theory in muonic H



# Theory in muonic H





muonic hydrogen: $0.8409 \pm 0.0004$  fmelectronic hydrogen: $0.876 \pm 0.008$  fmelectron scattering $0.879 \pm 0.011$  fm

20x more precise

#### **Muonic Deuterium**

#### 2.5 transitions in muonic D



# Theory in muonic D


#### **Muonic Deuterium**

#### muonic

electronic



RP et al. (CREMA Coll.), Science 353, 559 (2016)

+ Pachucki et al., PRA 97, 062511 (2018)

- + Hernandez et al., PLB 778, 377 (2018)
- + Kalinowski, arXiv 1812.10993

#### Muonic Deuterium

#### muonic

electronic



#### **Muonic Deuterium**

muonic

electronic



Pohl et al. (CREMA), Science 353, 669 (2016)

## Theory in muonic D



Two-photon nuclear structure contributions to the Lamb shift in muonic deuterium.



## Theory in muonic D



#### Muonic Helium-3 and -4

## Theory in muonic He-3



#### Three-photon contribution still missing (Pachucki et al., PRA 97, 052511 (2018))

#### muonic <sup>3</sup>He ions



#### **Muonic Helium-3**



Theory: see Franke et al. EPJ D 71, 341 (2017) [1705.00352]

#### Theory in muonic He-4



Three-photon contribution still missing (Pachucki et al., PRA 97, 052511 (2018))

#### **Muonic Helium-4**



prel. accuracy: exp +- 0.00019 fm, theo +- 0.00058 fm (nucl. polarizability)

Theory: M. Diepold, RP et al. Ann. Phys. (N.Y.) 396, 220 (2018) (arxiv 1606.05231 (sic!))

## The <sup>3</sup>He – <sup>4</sup>He isotope shift

<sup>3</sup>He / <sup>4</sup>He (squared) charge radius difference



Shiner et al., PRL 74, 3553 (1995) vanRooij, Science 333, 196 (2011) Cancio Pastor et al., PRL 108, 143001 (2012)

all evaluated with recent theory by Pachucki et al.

Sick, PRC 90, 064002 (2014)

### The <sup>3</sup>He – <sup>4</sup>He isotope shift

<sup>3</sup>He / <sup>4</sup>He (squared) charge radius difference



## Part 2: The Rydberg constant

$$R_{\infty} = \frac{\alpha^2 m_e c}{2 h}$$

- most accurately determined fundamental constant  $u_r = 5.9 * 10^{-12}$
- corner stone of the CODATA LSA of fundamental constants links fine structure constant α, electron mass m<sub>e</sub>, velocity of light c and Planck's constant h
- correlation coefficient with proton radius: 0.9891
  - $\rightarrow$  The "proton radius puzzle" could be a "Rydberg puzzle"
- $R_{\infty}$  is a "unit converter": atomic units  $\rightarrow$  SI (Hertz)

## Energy levels of hydrogen



#### Energy levels of hydrogen



#### Rp from H spectroscopy



## Garching H(2S-4P)



Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

## Garching H(2S-4P)



Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

## **Systematics**

| Contribution                        | ∆ <b>v (kHz)</b> | σ (kHz) |
|-------------------------------------|------------------|---------|
| Statistics                          | 0.00             | 0.41    |
| First-order Doppler shift           | 0.00             | 2.13    |
| Quantum interference shift          | 0.00             | 0.21    |
| Light force shift                   | -0.32            | 0.30    |
| Model corrections                   | 0.11             | 0.06    |
| Sampling bias                       | 0.44             | 0.49    |
| Second-order Doppler shift          | 0.22             | 0.05    |
| dc-Stark shift                      | 0.00             | 0.20    |
| Zeeman shift                        | 0.00             | 0.22    |
| Pressure shift                      | 0.00             | 0.02    |
| Laser spectrum                      | 0.00             | 0.10    |
| Frequency standard (hydrogen maser) | 0.00             | 0.06    |
| Recoil shift                        | -837.23          | 0.00    |
| Hyperfine structure corrections     | -132,552.092     | 0.075   |
| Total                               | -133,388.9       | 2.3     |

# The "Proton Radius Puzzle"MuonsElectrons



# New Measurements: Garching 2S-4PMuonsElectrons



#### New Rp from Paris: 1S-3S

PHYSICAL REVIEW LETTERS 120, 183001 (2018)

#### New Measurement of the 1S-3S Transition Frequency of Hydrogen: Contribution to the Proton Charge Radius Puzzle

Hélène Fleurbaey, Sandrine Galtier,<sup>\*</sup> Simon Thomas, Marie Bonnaud, Lucile Julien, François Biraben, and François Nez
Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, 4 place Jussieu, Case 74, 75252 Paris Cedex 05, France

Michel Abgrall and Jocelyne Guéna LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, 75014 Paris, France

(Received 8 December 2017; revised manuscript received 9 March 2018; published 4 May 2018)

We present a new measurement of the 1S - 3S two-photon transition frequency of hydrogen, realized with a continuous-wave excitation laser at 205 nm on a room-temperature atomic beam, with a relative uncertainty of  $9 \times 10^{-13}$ . The proton charge radius deduced from this measurement,  $r_p = 0.877(13)$  fm, is in very good agreement with the current CODATA-recommended value. This result contributes to the ongoing search to solve the proton charge radius puzzle, which arose from a discrepancy between the CODATA value and a more precise determination of  $r_p$  from muonic hydrogen spectroscopy.

## New Measurements: Paris 1S-3S Muons Electrons



#### Lamb shift

We are using a new Frequency-offset SOF technique (FOSOF) (AC Vutha and EA Hessels Phys. Rev. A052504 (2015))



E.A. Hessels, ECT Trento 2016

#### Lamb shift

We are using a new Frequency-offset SOF technique (FOSOF) (AC Vutha and EA Hessels Phys. Rev. A052504 (2015))



E.A. Hessels, ECT Trento 2016

#### Lamb shift

We are using a new Frequency-offset SOF technique (FOSOF) (AC Vutha and EA Hessels Phys. Rev. A052504 (2015))



E.A. Hessels, ECT Trento 2016

## New Measurements: Toronto 2S-2PMuonsElectrons



#### **Electron scattering**

#### Proton Radius from $ep \rightarrow ep$ Scattering Experiments

In the limit of first Born approximation the elastic *ep* scattering (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE'\sin^2\frac{\theta}{2} \qquad \tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

Structureless proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$

- G<sub>E</sub> and G<sub>M</sub> were extracted using Rosenbluth separation (or at extremely low Q<sup>2</sup> the G<sub>M</sub> can be ignored, like in the PRad experiment)
- The Taylor expansion at low Q<sup>2</sup>:

$$G_E^p(Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots$$



 $O^2 = 0$ 

A. Gasparian

#### The PRad Experimental Approach

- PRad initial goals:
  - large Q<sup>2</sup> range in one experimental setting
  - reach to very low Q<sup>2</sup> range (~ 10<sup>-4</sup> GeV/C<sup>2</sup>)
  - reach to sub-percent precision in cross section
- PRad suggested solutions:
  - use high resolution high acceptance calorimeter:
    - ✓ reach smaller scattering angles: ( $\theta_e = 0.7^\circ 7.0^\circ$ ) ( $Q^2 = 2x10^{-4} \div 6x10^{-2}$ ) GeV/c<sup>2</sup>;
    - large Q<sup>2</sup> range in one experimental setting!;
    - ✓ simultaneous detection of ee → ee Moller scattering
       (best known control of systematics).
  - > use high density windowless  $H_2$  gas flow target:
    - beam background under control;
    - minimize experimental background.



Mainz low Q<sup>2</sup> data set Phys. Rev. C 93, 065207, 2016

- Two beam energies:  $E_0 = 1.1$  GeV and 2.2 GeV to increase Q<sup>2</sup> range.
- Approved by JLab PAC39 (June, 2012) with high "A" scientific rating.

#### PRad Experimental Setup in Hall B at JLab (schematics)

- Main detector elements:
  - windowless H<sub>2</sub> gas flow target
  - PrimEx HyCal calorimeter
  - vacuum box with one thin window at HyCal end
  - X,Y GEM detectors on front of HyCal

- Beam line equipment:
  - standard beam line elements (0.1 50 nA)
  - photon tagger for HyCal calibration
  - collimator box (6.4 mm collimator for photon beam, 12.7 mm for e<sup>-</sup> beam halo "cleanup")
  - > Harp 2H00
  - pipe connecting Vacuum Window through HyCal



#### Our Fit of the Extracted $G_E$ (Preliminary)



## New Measurements: PRad Muons Electrons



## New Mainz electron accelerator MESA

Kurt Aulenbacher

MESA — "Mainz Energy-Recovering Superconducting Accelerator



Being built on Campus of JGU Mainz

Cluster of Excellence **PRISMA**, since 27.9. also **PRISMA+ !!!** 

#### Conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

calculated polarizability
Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with



The New Hork Times

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

calculated polarizability

• few times more accurate **nuclear polarizability**,

when combined with charge radius from regular atoms

Muonic atoms are a novel tool for proton and new-nucleon properties!

Proton radius situation:

- smaller radii from muonic hydrogen and deuterium imply a smaller Rydberg constant
- new H(2S-4P) gives a smaller proton radius
- new H(1S-3S) however confirms large proton radius

Proton radius situation:

- smaller radii from muonic hydrogen and deuterium imply a smaller Rydberg constant
- new H(2S-4P) gives a smaller proton radius
- new H(1S-3S) however confirms large proton radius

More data needed:

- H(2S 6P, 8P, 9P, ...) and D(2S-nI) underway in Garching and Colorado
- H(1S 3S, 4S, ..) underway in Paris and Garching
- H(2S-2P) (Hessels @ Toronto)
- Muonium at PSI, J-PARC
- Positronium (Cassidy @ UCL, Crivelli @ ETH)
- He<sup>+</sup>(1S-2S) underway in Garching (Udem) and Amsterdam (Eikema)
- HD<sup>+</sup>, H<sub>2</sub>, etc. in Amsterdam (Ubachs @ Amsterdam) and Paris (Hilico, Karr @ Paris)
- He (Vassen @ Amsterdam), Li<sup>+</sup> (Udem @ Garching)
- HCI, e.g. H-like Ne (Tan @ NIST)
- Rydberg-atoms, e.g. Rb (Raithel @ Ann Arbor)
- new low-Q<sup>2</sup> electron scattering at MAMI, JLab, MESA
- muon scattering: MUSE @ PSI, COMPASS @ CERN

Proton radius situation:

- smaller radii from muonic hydrogen and deuterium imply a smaller Rydberg constant
- new H(2S-4P) gives a smaller proton radius
- new H(1S-3S) however confirms large proton radius

More data needed:

- H(2S 6P, 8P, 9P, ...) and D(2S-nI) underway in Garching and Colorado
- H(1S 3S, 4S, ..) underway in Paris and Garching
- H(2S-2P) (Hessels @ Toronto)
- Muonium at PSI, J-PARC
- Positronium (Cassidy @ UCL, Crivelli @ ETH)
- He⁺(1S-2S) underway in Garching (Udem) and Amsterdam (Eikema)
- HD<sup>+</sup>, H<sub>2</sub>, etc. in Amsterdam (Ubachs) and Paris (Hilico, Karr)
- He (Vassen @ Amsterdam), Li<sup>+</sup> (Udem @ Garching)
- HCI, e.g. H-like Ne (Tan @ NIST)
- Rydberg-atoms, e.g. Rb (Raithel @ Ann Arbor)
- new low-Q<sup>2</sup> electron scattering at MAMI, JLab, MESA
- muon scattering: MUSE @ PSI, COMPASS @ CERN

# Compare Rydberg values to test QED and SM

## Up next: Hyperfine structure in $\mu p$

The 21 cm line in hydrogen (1S hyperfine splitting) has been **measured** to 12 digits (0.001 Hz) in 1971:

#### $v_{exp}$ = 1 420 405. 751 766 7 ± 0.000 001 kHz

Essen et al., Nature 229, 110 (1971)

## Up next: Hyperfine structure in µp

The 21 cm line in hydrogen (1S hyperfine splitting) has been **measured** to 12 digits (0.001 Hz) in 1971:

#### $v_{exp}$ = 1 420 405. 751 766 7 ± 0.000 001 kHz

Essen et al., Nature 229, 110 (1971)

**QED test** is limited to 6 digits (800 Hz) because of proton structure effects:

$$v_{\text{theo}} = 1\ 420\ 403.\ 1\ \pm 0.6_{\text{proton size}}\ \pm 0.4_{\text{polarizability}}\ \text{kHz}$$

Eides et al., Springer Tracts 222, 217 (2007)

#### **Proton Zemach radius**

HFS depends on "Zemach" radius:

 $\Delta E = -2(Z\alpha)m\langle r \rangle_{(2)}E_F$ 

$$\langle r \rangle_{(2)} = \int d^3r d^3r' \rho_E(r) \rho_M(r') |r-r'|$$

Zemach, Phys. Rev. 104, 1771 (1956)

Form factors and momentum space

$$\Delta E = \frac{8(Z\alpha)m}{\pi n^3} E_F \int_0^\infty \frac{dk}{k^2} \left[ \frac{G_E(-k^2)G_M(-k^2)}{1+\kappa} \right]$$

#### Proton Zemach radius from µp



#### Proton Zemach radius from µp



PSI Exp. R-16-02: Antognini, RP et al. (CREMA-3 / HyperMu)

see e.g. Schmidt, RP et al., arXiv 1808.07240

















#### Thanks a lot for your attention

The Garching Hydrogen Team:

Axel Beyer, Lothar Maisenbacher, Arthur Matveev, RP, Ksenia Khabarova, Alexey Grinin, Tobias Lamour, Dylan C. Yost, Theodor W. Hänsch, Nikolai Kolachevsky, Thomas Udem

The CREMA Collaboration:

Aldo Antognini, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Luis M. P. Fernandes, Adolf Giesen, Andrea L. Gouvea, Thomas Graf, Theodor W.
Hänsch, Paul Indelicato, Lucile Julien, Paul Knowles, Franz Kottmann, Juilian J. Krauth, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, François Nez, Paul Rabinowitz, Joaquim M. F. dos Santos, Lukas A. Schaller, Karsten Schuhmann, Catherine Schwob, David Taqqu, João F. C. A. Veloso, RP

#### Thanks a lot for your attention

My new Mainz group:

Jan Haack, Merten Heppener, Rishi Horn, Ahmed Ouf, Stefan Schmidt, Gregor Schwendler, Lukas Schumacher, Andreas Wieltsch, Marcel Willig

The Garching Hydrogen Team:

Axel Beyer, Lothar Maisenbacher, Arthur Matveev, RP, Ksenia Khabarova, Alexey Grinin, Tobias Lamour, Dylan C. Yost, Theodor W. Hänsch, Nikolai Kolachevsky, Thomas Udem

#### The CREMA Collaboration:

Aldo Antognini, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Luis M. P. Fernandes, Adolf Giesen, Andrea L. Gouvea, Thomas Graf, Theodor W.
Hänsch, Paul Indelicato, Lucile Julien, Paul Knowles, Franz Kottmann, Juilian J. Krauth, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, François Nez, Paul Rabinowitz, Joaquim M. F. dos Santos, Lukas A. Schaller, Karsten Schuhmann, Catherine Schwob, David Taqqu, João F. C. A. Veloso, RP

#### Thanks a lot for your attention

My new Mainz group:

Jan Haack, Merten Heppener, Rishi Horn, Ahmed Ouf, Stefan Schmidt, Gregor Schwendler, Lukas Schumacher, Andreas Wieltsch, Marcel Willig



#### The CREMA Collaboration:

Aldo Antognini, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Luis M. P. Fernandes, Adolf Giesen, Andrea L. Gouvea, Thomas Graf, Theodor W.
Hänsch, Paul Indelicato, Lucile Julien, Paul Knowles, Franz Kottmann, Juilian J. Krauth, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, François Nez, Paul Rabinowitz, Joaquim M. F. dos Santos, Lukas A. Schaller, Karsten Schuhmann, Catherine Schwob, David Taqqu, João F. C. A. Veloso, RP

#### Group at JGU Mainz



## Theory in muonic H

 $\Delta E_{\text{Lamb}} = 206.0336 (15) \text{ meV}_{\text{OED}} + 0.0332 (20) \text{ meV}_{\text{TPE}} - 5.2275 (10) \text{ meV/fm}^2 * R_n^2$ 

#### 2P fine structure Simple-looking formula $2P_{3/2}$ based on decades of work by E. Borie, M.C. Birse, P. Blunden, C.E. Carlson, $2P_{1/2}$ M.I. Eides, R. Faustov, J.L. Friar, G. Paz, A. Pineda, J. McGovern, K. Griffioen, H. Grotch, 206 meV F. Hagelstein, H.-W. Hammer, R.J Hill, P.Indelicato, 50 THz U.D. Jentschura, S.G. Karshenboim, E.Y. Korzinin, 6 µm V.G. Ivanov, I.T. Lorenz, A.P. Martynenko, G.A. Miller, U.-G. Meissner, P.J. Mohr, Lamb K. Pachucki, V. Pascalutsa, J. Rafelski, shift V.A. Shelyuto, I. Sick, A.W. Thomas, 5.5 µm M. Vanderhaeghen, V. Yerokhin, . . . . .

(shout if I missed your name!)

Antognini, RP at al., Ann. Phys. (N.Y.) 331, 127 (2013)



## Theory in muonic H



## Theory of the 2S–2P Lamb shift and 2S hyperfine (



Aldo Antognini<sup>a,\*</sup>, Franz Kottmann<sup>a</sup>, François Biraben<sup>b</sup>, Paul Indelicato<sup>b</sup>, François Nez<sup>b</sup>, Randolf Pohl<sup>c</sup>

<sup>a</sup> Institute for Particle Physics, ETH Zurich, 8093 Zurich, Switzerland

<sup>b</sup> Laboratoire Kastler Brossel, École Normale Supérieure, CNRS and Université P. et M. Curie, 75252 Paris, CEDEX 05, France

<sup>c</sup> Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

Our attempt to summarize all the original work by many theorists....

## Theory I: "pure" QED

#### Table 1

All known radius-*independent* contributions to the Lamb shift in  $\mu$ p from different authors, and the one we selected. Values are in meV. The entry # in the first column refers to Table 1 in Ref. [13]. The "finite-size to relativistic recoil correction" (entry #18 in [13]), which depends on the proton structure, has been shifted to Table 2, together with the small terms #26 and #27, and the proton polarizability term #25. SE: self-energy, VP: vacuum polarization, LBL: light-by-light scattering, Rel: relativistic, NR: non-relativistic, RC: recoil correction.

| #                           | Contribution                                                                                                                                                                                                  | Pachucki<br>[10,11]                                           | Nature<br>[13]                              | Borie-v6<br>[79]                                                                 | Indelicato<br>[80]              | Our choice                                      | Ref.                                                                                 |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>19           | NR one-loop electron VP (eVP)<br>Rel. corr. (Breit–Pauli)<br>Rel. one-loop eVP<br>Rel. RC to eVP, $\alpha (Z\alpha)^4$                                                                                        | 205.0074<br>0.0169 <sup>a</sup><br>(incl. in #2) <sup>b</sup> | 205.0282<br>—0.0041                         | 205.0282<br>—0.0041                                                              | 205.02821                       | 205.02821<br>—0.00208 <sup>c</sup>              | [80] Eq. (54)<br>[77,78]                                                             |
| 4                           | Two-loop eVP (Källén–Sabry)                                                                                                                                                                                   | 1.5079                                                        | 1.5081                                      | 1.5081                                                                           | 1.50810                         | 1.50810                                         | [80] Eq. (57)                                                                        |
| 5<br>7<br>6                 | One-loop eVP in 2-Coulomb lines $\alpha^2 (Z\alpha)^5$<br>eVP corr. to Källén–Sabry<br>NR three-loop eVP                                                                                                      | 0.1509<br>0.0023<br>0.0053                                    | 0.1509<br>0.00223<br>0.00529                | 0.1507<br>0.00223<br>0.00529                                                     | 0.15102<br>0.00215              | 0.15102<br>0.00215<br>0.00529                   | [80] Eq. (60)<br>[80] Eq. (62), [87]<br>[87,88]                                      |
| 9<br>10<br>New              | Wichmann–Kroll, "1:3" LBL<br>Virtual Delbrück, "2:2" LBL<br>"3:1" LBL                                                                                                                                         |                                                               | -0.00103<br>0.00135                         | $   \begin{array}{r}     -0.00102 \\     0.00115 \\     -0.00102   \end{array} $ | -0.00102                        | -0.00102<br>0.00115<br>-0.00102                 | [80] Eq. (64), [89]<br>[74,89]<br>[89]                                               |
| 20                          | $\mu {	t SE}$ and $\mu {	t VP}$                                                                                                                                                                               | -0.6677                                                       | -0.66770                                    | -0.66788                                                                         | -0.66761                        | -0.66761                                        | [80] Eqs. (72) + (76)                                                                |
| 11<br>12<br>21<br>13<br>New | Muon SE corr. to eVP $\alpha^2 (Z\alpha)^4$<br>eVP loop in self-energy $\alpha^2 (Z\alpha)^4$<br>Higher order corr. to $\mu$ SE and $\mu$ VP<br>Mixed eVP + $\mu$ VP<br>eVP and $\mu$ VP in two Coulomb lines | -0.005(1)<br>-0.001                                           | -0.00500<br>-0.00150<br>-0.00169<br>0.00007 | $-0.004924^{d}$<br>$-0.00171^{g}$<br>0.00007                                     | 0.00005                         | -0.00254<br>f<br>-0.00171<br>0.00007<br>0.00005 | [85] Eq. (29a) <sup>e</sup><br>[74,90–92]<br>[86] Eq. (177)<br>[74]<br>[80] Eq. (78) |
| 14<br>15<br>16              | Hadronic VP $\alpha (Z\alpha)^4 m_r$<br>Hadronic VP $\alpha (Z\alpha)^5 m_r$<br>Rad corr. to hadronic VP                                                                                                      | 0.0113(3)                                                     | 0.01077(38)<br>0.000047<br>-0.000015        | 0.011(1)                                                                         |                                 | 0.01121(44)<br>0.000047<br>0.000015             | [93–95]<br>[94,95]<br>[94,95]                                                        |
| 17<br>22<br>23<br>New       | Recoil corr.<br>Rel. RC $(Z\alpha)^5$<br>Rel. RC $(Z\alpha)^6$<br>Rad. (only eVP) RC $\alpha(Z\alpha)^5$                                                                                                      | 0.0575<br>0.045<br>0.0003                                     | 0.05750<br>                                 | 0.0575<br>—0.04497                                                               | 0.05747<br>0.04497<br>0.0002475 | 0.05747<br>                                     | [80] Eq. (88)<br>[80] Eq. (88), [74]<br>[80] Eq. (86)+Tab.II<br>[85] Eq. (64a)       |
| 24                          | Rad. RC $\alpha(Z\alpha)^n$ (proton SE)                                                                                                                                                                       | -0.0099                                                       | -0.00960                                    | -0.0100                                                                          |                                 | -0.01080(100)                                   | [43] <sup>h</sup> [74]                                                               |
|                             | Sum                                                                                                                                                                                                           | 206.0312                                                      | 206.02915                                   | 206.02862                                                                        |                                 | 206.03339(109)                                  |                                                                                      |

## Theory in muonic H



#### Theory in muonic D

 $\Delta E_{\text{Lamb}}^{\mu D} = 228.7854 \text{ (13) } \text{meV}_{\text{QED}} + 1.7150 \text{ (230) } \text{meV}_{\text{TPE}} - 6.1103 \text{ (3) } \text{meV/fm}^2 * R_d^2$ 

#### Nuclear structure contributions to the Lamb shift in muonic deuterium.

| Item                 | Contribution                                                       | Pachuck                  | i [55]         |                | Friar [60]                           | Hernandez et al. [58] |                            | Pach.& Wienczek [65]     |                   | Carlson et al. [64] | Our choice               |                     |                |             |
|----------------------|--------------------------------------------------------------------|--------------------------|----------------|----------------|--------------------------------------|-----------------------|----------------------------|--------------------------|-------------------|---------------------|--------------------------|---------------------|----------------|-------------|
|                      |                                                                    | AV18                     |                | ZRA            |                                      | AV18                  | $N^{3}LO^{\dagger}$        |                          | AV18              |                     | data                     |                     | value          | source      |
|                      | Source                                                             | 1                        |                | 2              |                                      | 3                     | 4                          |                          | 5                 |                     | 6                        |                     |                |             |
| p1                   | Dipole                                                             | 1.910                    | $\delta_0 E$   | 1.925          | Leading C1                           | 1.907                 | 1.926                      | $\delta_{D1}^{(0)}$      | 1.910             | $\delta_0 E$        |                          | 1.9165              | $\pm \ 0.0095$ | 3-5         |
| p2                   | Rel. corr. to p1, longitudinal part                                | -0.035                   | $\delta_R E$   | -0.037         | Subleading C1                        | -0.029                | -0.030                     | $\delta_L^{(0)}$         | -0.026            | $\delta_R E$        |                          |                     |                |             |
| p3                   | Rel. corr. to p1, transverse part                                  |                          |                |                |                                      | 0.012                 | 0.013                      | $\delta_{T}^{(0)}$       |                   |                     |                          |                     |                |             |
| $\mathbf{p4}$        | Rel. corr. to p1, higher-order                                     |                          |                |                |                                      |                       |                            |                          | 0.004             | $\delta_{HO}E$      |                          |                     |                |             |
| $\operatorname{sum}$ | Total rel. corr., p $2+p3+p4$                                      | -0.035                   |                | -0.037         |                                      | -0.017                | -0.017                     |                          | -0.022            |                     |                          | -0.0195             | $\pm \ 0.0025$ | 3-5         |
| $p_5$                | Coulomb distortion, leading                                        | -0.255                   | $\delta_{C1}E$ |                |                                      |                       |                            |                          | -0.255            | $\delta_{C1}E$      |                          |                     |                |             |
| $\mathbf{p6}$        | Coul. distortion, next order                                       | -0.006                   | $\delta_{C2}E$ |                |                                      |                       |                            |                          | -0.006            | $\delta_{C2}E$      |                          |                     |                |             |
| $\operatorname{sum}$ | Total Coulomb distortion, $\mathbf{p5+p6}$                         | -0.261                   |                |                |                                      | -0.262                | -0.264                     | $\delta_{C}^{(0)}$       | -0.261            |                     |                          | -0.2625             | $\pm \ 0.0015$ | 3-5         |
| p7                   | El. monopole excitation                                            | -0.045                   | $\delta_{Q0}E$ | -0.042         | C0                                   | -0.042                | -0.041                     | $\delta_{R2}^{(2)}$      | -0.042            | $\delta_{Q0}E$      |                          |                     |                |             |
| $\mathbf{p8}$        | El. dipole excitation                                              | 0.151                    | $\delta_{Q1}E$ | 0.137          | Retarded C1                          | 0.139                 | 0.140                      | $\delta_{D1D3}^{(2)}$    | 0.139             | $\delta_{Q1}E$      |                          |                     |                |             |
| p9                   | El. quadrupole excitation                                          | -0.066                   | $\delta_{Q2}E$ | -0.061         | C2                                   | -0.061                | -0.061                     | $\delta_{Q}^{(2)}$       | -0.061            | $\delta_{Q2}E$      |                          |                     |                |             |
| $\operatorname{sum}$ | Tot. nuclear excitation, $\mathbf{p7}{+}\mathbf{p8}{+}\mathbf{p9}$ | 0.040                    |                | 0.034          | $\rm C0+ret\text{-}C1+C2$            | 0.036                 | 0.038                      |                          | 0.036             |                     |                          | 0.0360              | $\pm \ 0.0020$ | 2-5         |
| p10                  | Magnetic                                                           | $-0.008$ $^{\diamond a}$ | $\delta_M E$   | -0.011         | M1                                   | -0.008                | -0.007                     | $\delta_M^{(0)}$         | -0.008            | $\delta_M E$        |                          | -0.0090             | $\pm \ 0.0020$ | 2-5         |
| SUM_1                | Total nuclear (corrected)                                          | 1.646                    |                | $1.648$ $^{b}$ |                                      | 1.656                 | 1.676                      |                          | 1.655             |                     |                          | 1.6615              | $\pm$ 0.0103   |             |
| p11                  | Finite nucleon size                                                |                          |                | 0.021          | Retarded C1 f.s.                     | $0.020^{\diamond}$    | $^{c}$ 0.021 $^{\diamond}$ | $^{c} \delta_{NS}^{(2)}$ | 0.020             | $\delta_{FS}E$      |                          |                     |                |             |
| p12                  | n p charge correlation                                             |                          |                | -0.023         | pn correl. f.s.                      | -0.017                | -0.017                     | $\delta_{np}^{(1)}$      | -0.018            | $\delta_{FZ}E$      |                          |                     |                |             |
| $\operatorname{sum}$ | p11+p12                                                            |                          |                | -0.002         |                                      | 0.003                 | 0.004                      |                          | 0.002             |                     |                          | 0.0010              | $\pm$ 0.0030   | 2-5         |
| p13                  | Proton elastic 3rd Zemach moment                                   | $\int_{0.043(3)}$        | $\delta_{D}E$  | 0.030          | $\langle r^3 \rangle_{(2)}^{\rm pp}$ |                       |                            |                          | $\int_{0.043(3)}$ | $\delta_{P}E$       |                          | 0.0289              | $\pm$ 0.0015   | $Eq.(13)^d$ |
| p14                  | Proton inelastic polarizab.                                        | J 0.0 10(0)              | 0712           |                |                                      |                       | 27(2)                      | §N [64]                  | ] ] 0.010(0)      | •F 2                | LO 028(2) A Ehadr        | 1 20 0280           | $\pm 0.0020$   | 6           |
| p15                  | Neutron inelastic polarizab.                                       |                          |                |                |                                      |                       | 27(2)                      | opol [04]                | 0.016(8)          | $\delta_N E$        | $\int 0.028(2) \Delta E$ | ∫ <sup>0.0280</sup> | $\pm 0.0020$   | 0           |
| p16                  | Proton & neutron subtraction term                                  |                          |                |                |                                      |                       |                            |                          |                   |                     |                          | -0.0098             | $\pm$ 0.0098   | $Eq.(15)^e$ |
| $\operatorname{sum}$ | Nucleon TPE, p13+p14+p15+p16                                       | 0.043(3)                 |                | 0.030          |                                      | 0.03                  | 27(2)                      |                          | 0.059(9)          |                     |                          | 0.0471              | $\pm$ 0.0101   | f           |
| SUM_2                | Total nucleon contrib.                                             | 0.043(3)                 |                | 0.028          |                                      | 0.03                  | 30(2)                      |                          | 0.061(9)          |                     |                          | 0.0476              | $\pm$ 0.0105   |             |
|                      | Sum, published                                                     | 1.680(16                 | )              | 1.941(1        | 19)                                  | 1.69                  | 0(20)                      |                          | 1.717(20)         |                     | 2.011(740)               |                     |                |             |
|                      | $\mathbf{Sum}, \mathrm{corrected}$                                 |                          |                | 1.697(1        | 19) <sup>g</sup>                     | 1.714                 | $(20)^{h}$                 |                          | 1.707(20)         | i                   | $1.748(740)^{j}$         | 1.7096              | $\pm 0.0147$   |             |

Krauth, RP at al., Ann. Phys. (N.Y.) 366, 168 (2016)

+ Pachucki et al., PRA 97, 062511 (2018)

+ Hernandez et al., PLB 778, 377 (2018)

#### **Deuteron radius**



Hernandez et al, Phys. Lett. B 778, 377 (2018) Pachucki et al., PRA 97, 062511 (2018)

#### Garching H(2S-4P)



Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

#### Garching H(2S-4P)



Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

## 1<sup>st</sup> order Doppler shift



Beyer, RP et al, Opt. Expr. 24, 17470 (2016)

#### **Systematics**

| Contribution                        | ∆ <b>v (kHz)</b> | σ (kHz) |
|-------------------------------------|------------------|---------|
| Statistics                          | 0.00             | 0.41    |
| First-order Doppler shift           | 0.00             | 2.13    |
| Quantum interference shift          | 0.00             | 0.21    |
| Light force shift                   | -0.32            | 0.30    |
| Model corrections                   | 0.11             | 0.06    |
| Sampling bias                       | 0.44             | 0.49    |
| Second-order Doppler shift          | 0.22             | 0.05    |
| dc-Stark shift                      | 0.00             | 0.20    |
| Zeeman shift                        | 0.00             | 0.22    |
| Pressure shift                      | 0.00             | 0.02    |
| Laser spectrum                      | 0.00             | 0.10    |
| Frequency standard (hydrogen maser) | 0.00             | 0.06    |
| Recoil shift                        | -837.23          | 0.00    |
| Hyperfine structure corrections     | -132,552.092     | 0.075   |
| Total                               | -133,388.9       | 2.3     |

#### New Rp from Paris: 1S-3S

PHYSICAL REVIEW LETTERS 120, 183001 (2018)

#### New Measurement of the 1S-3S Transition Frequency of Hydrogen: Contribution to the Proton Charge Radius Puzzle

Hélène Fleurbaey, Sandrine Galtier,<sup>\*</sup> Simon Thomas, Marie Bonnaud, Lucile Julien, François Biraben, and François Nez
Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, 4 place Jussieu, Case 74, 75252 Paris Cedex 05, France

Michel Abgrall and Jocelyne Guéna LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, 75014 Paris, France

(Received 8 December 2017; revised manuscript received 9 March 2018; published 4 May 2018)

We present a new measurement of the 1S - 3S two-photon transition frequency of hydrogen, realized with a continuous-wave excitation laser at 205 nm on a room-temperature atomic beam, with a relative uncertainty of  $9 \times 10^{-13}$ . The proton charge radius deduced from this measurement,  $r_p = 0.877(13)$  fm, is in very good agreement with the current CODATA-recommended value. This result contributes to the ongoing search to solve the proton charge radius puzzle, which arose from a discrepancy between the CODATA value and a more precise determination of  $r_p$  from muonic hydrogen spectroscopy.

#### New Rp from Paris: 1S-3S

arXiv: 1801.08816

Setup:



#### New Rp from Paris: 1S-3S

arXiv: 1801.08816



#### **Rp from H spectroscopy**



#### **Rp from H spectroscopy**



Beyer, Maisenbacher, RP et al, Science 358, 79 (2017) Fleurbaey et al., PRL 120, 183001 (2018)
#### Rydberg constants from H/D



#### And now with *muonic* charge radii



μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

## Rydberg constants from $e/\mu$ H/D



 $R_{\infty} [\mu H + H(1S-2S)] = 3.289 841 960 249 (1.0)^{Rp} (2.5)^{QED} kHz/c$ 

## Rydberg constants from $e/\mu$ H/D



 $R_{\infty} [\mu H + H(1S-2S)] = 3.289 841 960 249 (1.0)^{Rp} (2.5)^{QED} kHz/c$ 

# Rydberg constant from H(2S-4P)



Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)