Proton-Xi interaction studied via the femtoscopy method in p-Pb collisions with ALICE

Bernhard Hohlweger on behalf of the ALICE Collaboration 57. International Winter Meeting on Nuclear Physics 21st January 2019

Dimensions

R ~ 10 − 15 km M ~ 1.5 − 2 M_☉

Outer Crust lons, electron Gas,

Neutrons

Inner Core

Neutrons? Protons? Hyperons? Quark Matter?

- Neutron Stars: very dense, compact objects
- What is the EoS?
 - What are the constituents to consider?
 - How do they interact?

J. Schaffner-Bielich, Nucl. Phys. A 804 (2008), 309-321

- Neutron Stars: very dense, compact objects
- What is the EoS?
 - What are the constituents to consider?
 - How do they interact?
- At finite densities hyperon production becomes energetically favorable

J. Schaffner-Bielich, Nucl. Phys. A 804 (2008), 309-321

- Neutron Stars: very dense, compact objects
- What is the EoS?
- At finite densities hyperon production becomes energetically favorable
- Onset depends on:
 - mass
 - single particle hyperon potential in neutron matter

Exemplary equation of state

- Attractive U_{Λ} = 30 MeV fitted to data from Hypernuclei
 - For more on the interaction of the Λ: Talk by Steffen Maurus @ Thu, 19:00
- Assumes repulsive U_{Σ} = 30 MeV
- With and without repulsive Hyperon Hyperon interaction
- Scan of U_{Ξ} : significant impact on the EoS

S. Weissenborn et al. / Nuclear Physics A 881 (2012) 62–77

Exemplary equation of state

- Attractive $U_{\Lambda} = -30$ MeV fitted to data from from Hypernucleii
 - For more on the interaction of the Λ: Talk by Steffen Maurus @ Thu, 19:00
- Assumes repulsive U_{Σ} = 30 MeV
- With and without repulsive Hyperon Hyperon interaction
- Scan of U_{Ξ} : significant impact on the EoS
- Experimental constraints are necessary

- Kiso Event: Ξ^- hyper nucleus
- Points towards an attractive interaction
 - Hyper nucleus binding energy $B_{\Xi^-} = 4.38 \pm 0.25$ MeV
- Can we directly observe the attraction with femtoscopy?

$$C(\mathbf{k}^*) = \frac{P(\mathbf{p}_a, \mathbf{p}_b)}{P(\mathbf{p}_a)P(\mathbf{p}_b)} = \mathcal{N}\frac{N_{same}}{N_{mixed}} = \int \frac{S(\mathbf{r})|\Psi(\mathbf{k}^*, \mathbf{r})|^2 d^3 \mathbf{r}}$$

with $\mathbf{k}^* = \frac{1}{2}|\mathbf{p}_a^* - \mathbf{p}_b^*|$ and $\mathbf{p}_a^* + \mathbf{p}_b^* = 0$

$$C(\mathbf{k}^*) = \frac{P(\mathbf{p}_a, \mathbf{p}_b)}{P(\mathbf{p}_a)P(\mathbf{p}_b)} = \mathcal{N} \frac{N_{same}}{N_{mixed}} = \int \frac{S(\mathbf{r})|\Psi(\mathbf{k}^*, \mathbf{r})|^2 d^3 \mathbf{r}}$$

with $\mathbf{k}^* = \frac{1}{2}|\mathbf{p}_a^* - \mathbf{p}_b^*|$ and $\mathbf{p}_a^* + \mathbf{p}_b^* = 0$

- Use ALICE datasets ...
 - pp $\sqrt{s} = 7 \text{ TeV}$ (2010) 2.5 x 10⁸ Events
 - pp $\sqrt{s} = 13$ TeV (2016/17) 11 x 10⁸ Events
 - p-Pb $\sqrt{s} = 5.02$ TeV (2016) 6.0 x 10⁸ Events
- ...to study
 - p-p, p- Ξ , p- Λ , Λ - Λ , p-K correlations
 - PID capabilities via TPC and TOF

$$C(\mathbf{k}^*) = \frac{P(\mathbf{p}_a, \mathbf{p}_b)}{P(\mathbf{p}_a)P(\mathbf{p}_b)} = \mathcal{N} \frac{N_{same}}{N_{mixed}} = \int \frac{S(\mathbf{r})|\Psi(\mathbf{k}^*, \mathbf{r})|^2 d^3 \mathbf{r}}$$

with $\mathbf{k}^* = \frac{1}{2}|\mathbf{p}_a^* - \mathbf{p}_b^*|$ and $\mathbf{p}_a^* + \mathbf{p}_b^* = 0$

• Formalism of λ parameters account for residual correlations from feed down and impurities (arXiv:1805.12455, accepted by PRC)

$$C(\mathbf{k}^*) = 1 + \lambda_{\text{genuine}} \cdot (C(\mathbf{k}^*) - 1) + \sum_{ij} \lambda_{ij} \cdot (C_{ij}(\mathbf{k}^*) - 1)$$

$$C(\mathbf{k}^*) = \frac{P(\mathbf{p}_a, \mathbf{p}_b)}{P(\mathbf{p}_a)P(\mathbf{p}_b)} = \mathcal{N}\frac{N_{same}}{N_{mixed}} = \int \frac{S(\mathbf{r})|\Psi(\mathbf{k}^*, \mathbf{r})|^2 d^3\mathbf{r}}{\text{with } \mathbf{k}^* = \frac{1}{2}|\mathbf{p}_a^* - \mathbf{p}_b^*| \text{ and } \mathbf{p}_a^* + \mathbf{p}_b^* = 0}$$

- Evaluation of $\mathcal{C}(k^*)$ using the CATS framework
 - (D.L. Mihaylov et al., Eur. Phys. J. C78 (2018) no.5, 394)
 - -Numerical solution of the Schrödinger equation yields $\Psi(k^*, r)$
 - Accounts for:
 - -Strong potential
 - Coulomb interaction
 - Effects of quantum statistics

$$C(\mathbf{k}^*) = \frac{P(\mathbf{p}_a, \mathbf{p}_b)}{P(\mathbf{p}_a)P(\mathbf{p}_b)} = \mathcal{N}\frac{N_{same}}{N_{mixed}} = \int \frac{S(\mathbf{r})|\Psi(\mathbf{k}^*, \mathbf{r})|^2 d^3\mathbf{r}}$$

with $\mathbf{k}^* = \frac{1}{2}|\mathbf{p}_a^* - \mathbf{p}_b^*|$ and $\mathbf{p}_a^* + \mathbf{p}_b^* = 0$

- Evaluation of *C*(k*) using the CATS framework (D.L. Mihaylov et al., Eur. Phys. J. C78 (2018) no.5, 394)
- Assumption: In small collision systems the emission source is
 Gaussian and approximately the same for all baryon pairs

- Described by a Gaussian source and the Argonne $\nu_{\rm 18}$ potential
 - Solve the Schrödinger equation with CATS
- Small source $r_{0,p-pB} = (1.437 \pm 0.011 (stat.)^{+0.013}_{-0.006} (syst.))$ fm
- Particularly sensitive to the strong potential

ALI-PREL-144825

 First direct observation of the strong interaction between a p-Ξ pair by more than 3 sigma

- First direct observation of the strong interaction between a p-Ξ pair by more than 3 sigma
- Test of a strong potential from preliminary HAL QCD calculations $C(k^*) = \frac{1}{8} \cdot \left(C_{I=0}^{S=0} + C_{I=1}^{S=0}\right) + \frac{3}{8} \cdot \left(C_{I=0}^{S=1} + C_{I=1}^{S=1}\right)$

- First direct observation of the strong interaction between a p-Ξ pair by more than 3 sigma
- Test of a strong potential from preliminary HAL QCD calculations $C(k^*) = \frac{1}{8} \cdot \left(C_{I=0}^{S=0} + C_{I=1}^{S=0}\right) + \frac{3}{8} \cdot \left(C_{I=0}^{S=1} + C_{I=1}^{S=1}\right)$

Implications for Neutron Stars

- NS → Pure Neutron Matter
 - At saturation density $U_{\Xi_{-}}$ slightly repulsive

- Femtoscopy is a new tool to study particle interactions
- Observation of attractive $p-\Xi^-$ interaction for the first time
 - Constrains the average potential of Ξ hyperons at finite densities for NS EoS
- Coming soon to arXiv:
 - Λ - Λ (Poster by A. Mathis), p-K and p- Ξ
- Ongoing analysis:
 - p-A, p- Ω^{-} and p- Σ^{0}

Thank you for your attention!

Decomposition of the p-p correlation function

 $\{ pp \} = pp + p_{\Lambda}p + p_{\Lambda} + p_{\Lambda} + p_{\Sigma^{+}}p + p_{\Sigma^{+}}p_{\Sigma^{+}} + p_{\Lambda}p_{\Sigma^{+}} + \tilde{p}p + \tilde{p}p_{\Lambda} + \tilde{p}p_{\Sigma^{+}} + \tilde{p}\tilde{p},$

- Purity from MC (Pythia 8)
- Feed-down fractions from MC template fits to the DCA_{xy} distribution

р–р				
rameter [%]				

Decomposition of the p- Ξ correlation function

$$\begin{split} \{p\Xi^{-}\} &= p\Xi^{-} + p\Xi_{\Xi^{-}(1530)}^{-} + p\Xi_{\Xi^{0}(1530)}^{-} + p\Xi_{\Omega}^{-} + p_{\Lambda}\Xi^{-} + p_{\Lambda}\Xi_{\Xi^{-}(1530)}^{-} \\ &+ p_{\Lambda}\Xi_{\Xi^{0}(1530)}^{-} + p_{\Lambda}\Xi_{\Omega}^{-} + p_{\Sigma^{+}}\Xi^{-} + p_{\Sigma^{+}}\Xi_{\Xi^{-}(1530)}^{-} + p_{\Sigma^{+}}\Xi_{\Xi^{0}(1530)}^{-} + p_{\Sigma^{+}}\Xi_{\Omega}^{-} \\ &+ \tilde{p}\Xi^{-} + \tilde{p}\Xi_{\Xi^{-}(1530)}^{-} + \tilde{p}\Xi_{\Xi^{0}(1530)}^{-} + \tilde{p}\Xi_{\Omega}^{-} + p\tilde{\Xi^{-}} + p_{\Lambda}\tilde{\Xi^{-}} + p_{\Sigma^{+}}\tilde{\Xi^{-}} + \tilde{p}\tilde{\Xi^{-}}. \end{split}$$

Feeding from

- W (BR very small)
- X⁰(1530) and X⁻(1530)
 - Isospin partners: assume to be produced in the same amount
 - X(1530)/X⁻ = 0.32 (<u>https://doi.org/10.1140/epjc/s10052-014-3191-x</u>)
 - BR($X^{0}(1530) \rightarrow X^{-}) = 2/3$
 - BR(X⁻(1530) \rightarrow X⁻) = 1/3

Pair	λ parameter [%]			
$p\Xi^-$	51.3			
$p\Xi_{\Xi^{-}(1530)}^{-}$	8.2			
$p\tilde{\Xi}^-$	8.5			
Feed-down (flat)	29.1			
Misidentification (flat)	2.9			

Some Numbers: p-Pb - $\sqrt{s_{NN}}$ = 5.02 TeV

p-Pb $\sqrt{s_{NN}}=5.02$ TeV			
Particle	# baryons (uncorrected)		
р	155 x 10 ⁶		
p	133 x 10 ⁶		
Λ	26 x 10 ⁶		
$\overline{\Lambda}$	24 x 10 ⁶		
Ξ^{-}	0.9 x 10 ⁶		
Ξ^+	0.9 x 10 ⁶		

Pair	# of pairs k* < 200 MeV/ <i>c</i>
p – p	517 x 10 ³
$\overline{\mathrm{p}}-\overline{\mathrm{p}}$	370 x 10 ³
$p - \Lambda$	127 x 10 ³
$\overline{p}-\overline{\Lambda}$	62 x 10 ³
$\Lambda - \Lambda$	13 x 10 ³
$\bar{\Lambda}-\bar{\Lambda}$	12 x 10 ³
$p - \Xi^-$	1.8 x 10 ³
$\bar{p} - \Xi^+$	1.3 x 10 ³

The unique opportunity of small sources

24

- Proton identification with TPC and TOF
- Reconstruction of hyperons
 - $\Lambda \rightarrow p\pi^-$ (BR ~ 64%)
 - $\Xi^- \rightarrow \Lambda \pi^-$ (BR ~ 100%)
- Datasets:
 - pp 7 TeV: 3.4·10⁸ Events
 - pp 13 TeV: 10·10⁸ Events
 - p-Pb 5.02 TeV: 6.0·10⁸ Events

Modelling the Correlation function ALICE $C(k^*) = N \cdot C_{base}$

$$_{\text{eline}}(k^*) \cdot \left(1 + \lambda_{\text{genuine}} \cdot \left(C_{\text{genuine}}(k^*) - 1\right) + \sum \lambda_{ij} \cdot \left(C_{ij}(k^*) - 1\right)\right)$$

CATS Correlation Analysis Tool Using the Schrödinger Equation		Lednický
Numerical Solver		Analytical Model
Analytical source distribution Distributions from transport models	SOURCE	Gaussian source distribution
 Solution of the two particle Schrödinger Equation ➤ Can incorporate any strong interaction potential, Coulomb interaction and effects of quantum statistics 	WAVE FUNCTION	 Based on the effective Range expansion ➤ The interaction is modeled using the scattering length (f₀) and the effective range (d₀)
p-p, p- Ξ and p- Λ (NLO) Correlation function	Used to fit the	p- Λ (LO) and $\Lambda extsf{}\Lambda$ Correlation function
arXiv:1802.08481 (Accepted by EPJC)		R. Lednicky and V. L. Lyuboshits, Sov. J. Nucl. Phys. 35, 770 (1982), [Yad. Fiz.35,1316(1981)].

