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* Jets = collimated sprays of particles
created in hard interactions
* Interesting for heavy-ion collision:
Calibrated probes of medium!

Broad bandwidth of measurements:
e Spectra, nuclear modification factors
e Correlation measurements
e Shapes, (sub)structure analyses

Particularly interesting: Low transverse momenta

- Medium effects strongest

Main obstacle: Overwhelmingly large background of
particles not originating from hard parton interactions
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- Roughly 140 GeV/c per unit area
— Tracks per event N = O(2000)

(01 yaek > 0-15 GeVic, Vs = 2.76 TeV)

In addition: Large region-to-region fluctuations!

 Random poissonian
* Particle flow
e Detector inhomogenities

“https:/larxiv.orglabs/1201.2423
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& Jets in heavy-ion background Il

Background effect on jet in Pb-Pb (toy background):

Jet Pt raw = 112.9 GeV/c Jet [ 19.3 GeV/c

I backround wlo background

Accumulated
particle momentum
around jet axis

Background/fluctuations largely affect jet momenta and axes
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& Jets in heavy-ion background Il

Background effect on jet in Pb-Pb (toy background):
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Jet Pt raw = 116.5 GeV/c Jet Pr e = 0.7 GeV/c

w/ background wlo background

Accumulated
particle momentum
around jet axis
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jet

Background/fluctuations largely affect jet momenta and axes
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How to correct jets for background?

De facto standard method in ALICE:
Area-based background correction method
* Event-by-event: Calculate mean background density
« Correct each jet p_ by subtracting background density x jet area:

PT,rec — PT,raw — ,OA

* Residual fluctuations usually treated statistically in unfolding

Main caveats:
« Poor precision on jet energy scale at low-p_

 Combinatorial jets not treated

We can do better!
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ML background estimator: Introduction

Idea: Some information on background encoded In jet
* Background conceptually different than signal
— Different spectrum, spatial distribution

* However, relation of the input parameters not trivial

Perfect candidate to exploit complex high-dimensional
parameter correlations: Machine learning

Method described here is fully described in paper
which we submitted to PRC

Preprint on arXiV: https://arxiv.org/pdf/1810.06324.pdf
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https://arxiv.org/pdf/1810.06324.pdf

ML background estimator: Introduction

Ansatz: Use machine learning techniques to calculate
background on jet-by-jet basis (instead of event-by-event)

Supervised learning approach:
* Mapping of raw and corrected jet momentum is learned
from model data, not modeled itself
* Regression task: Numerical value is approximated

Several estimators evaluated, all widely used in HEP:
 Shallow neural networks (100 - 100 - 50)
* Random forests
* Linear regression
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ML background estimator: Toy model

Toy model used for training:
* PYTHIA jets, Vs = 2.76 TeV, in thermal background
- Fastjet anti-k_ jets, R = 0.4

* Charged jets (no neutral particles)
(extension to full jets straightforward)
* Thermal background multiplicity distribution roughly as
In central Pb-Pb collisions
(Gaussian distribution, mean: 1800, width: 200)
* Particle momentum distribution modeled to coincide
data at low p_, but to fall much quicker for higher

momenta = 4 GeV/c
* Many cross checks done, estimators very robust for
different thermal background definitions!
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ML background estimator: Parameters

Input parameters to the estimator:
e Jet momentum

e uncorrected from jet finder

e corrected w/ established area-based method
» Selected jet shapes (mass, radial moment, momentum dispersion, LeSub)
* Number of constituents, mean + median of const. momenta
* First ten leading constituent momenta

We also did a feature importance analysis:
Established correction brings a lot of separation!
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Performance on toy: Method comparison

—o— Neural network

Performance indicator:
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Comparison of area-based method to several ML methods:

ML methods all perform much better:
* Higher resolution (less residual fluctuations)
e Still centered around nominal zero
* Neural network estimator works particularly well
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Performance on toy: Different momenta
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Comparison of different jet transverse momenta:
Roughly same performance for full considered range

Note: Results shown for NN estimator, but similar results also
for other estimators
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Performance on toy: Method comparison

Area-based background correction Neural network estimator
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Comparison of response matrix true vs. reconstructed jet p_:
Clearly huge performance gain for all momenta
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Model robustness: Thermal model
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Train estimator on one background but test on another:

Same performance for different backgrounds:
* Different (never trained) multiplicities perform as well
* No influence from hydrodynamic particle flow
« Many further tests show robustness (different toy p_

distributions, training on flat multiplicity distributions, ...)
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Model robustness: Fragmentation
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Check effect of different fragmentation on performance
- Train on inclusive jets, evaluate extreme cases of g/g-jets

No strong dependence on fragmentation:
* Tests indicate a few percent effect on spectrum (worst case)
* Residual effects can be corrected for in unfolding procedure
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Model robustness: Resolution parameters
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Good ML estimator performance up to largest R:
* Trend shows less progression towards higher R
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3 ol nunere zreter 4 Jet spectra on MC data
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& Outlook

T
Several analyses using ML estimator ongoing in ALICE
Stay tuned for EPS-HEP 2019!

What else:
* Measure jet mass as cross check - "Full jet 4-vector”
* Even better: Two-parameter regression
- Background correction for p_and mass at the same time

* “Jet denoiser”
* Clean jet at constituent-level
* Nice use case for deep learning (e.g. deep autoencoder)
— EXxplorative: Just an idea at the moment...
— Needs much more computation power for training
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& Summary

T
« We Introduced a novel method to correct jet p_

— using common ML techniques
- correction done on jet-by-jet basis

* Toy model analysis indicates superior performance of
new approach
* Supported by independent HIJING MC studies
* No strong bias for differently fragmented jets
* Application to real heavy-ion data promising:
- higher precision, particularly at low transverse
momentum
- alot ongoing in ALICE

Thank you for your attention!
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