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Introduction
Stable nuclei are qualitatively described by “simple” models

@ (semi-empirical) liquid-drop model
e (basic) shell model
New techniques enable ab initio methods (A-body models)
What happens far from stability ?
Experimentally, Radioactive-lon Beams (RIB) available since 80s

= study of structure far from stability
= discovery of exotic structures

@ halo nuclei
@ shell inversions



|
Nuclear Landscape

Nuclear Landscape

-

_less than 300 sfable_

proton number Z

known nuclei

-

neutron number N

N ® \
' terra incognita |

@ ~ 300 stable nuclei
@ Z ~ Nupto*Ca
@N>ZforA > 40

@ stable nuclei

» compact
» magic numbers

e RIB allow to study

radioactive nuclei

e Terra incognita
between driplines
n-dripline unknown
beyond O

29



@ Basic features in nuclear structure
@ Liquid-drop model
@ Shell model

@ Ab initio nuclear models

© Radioactive-lon Beams

@ Oddities far from stability
@ Halo nuclei

@ Change in shell structure

© summary



Basic features in nuclear structure Liquid-drop model

Charge distributions in (stable) nuclei
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e constant density p, out to the surface (saturation)
@ same skin thickness ¢

(Stable) nuclei look like liquid drops of radius R « A!/?



Liquid-drop model

Binding energy per nucleon B(Z, N)/A has smooth behaviour
Bethe-Weizsacker semi-empirical mass formula
Z(Z-1) (A-22)

— 2/3
B(Z, N) = avA - ClSA - CICW — dsym A

Volume

Volume -+ surface

Volume + surface + Coulomb

Volume + surface + Coulomb + symmetry

B/A (MeV per nucleon)

3
He*
2 T
2
1t
AEET I T T (e s L A e e | | | L
0 20 40 60 80 100 120 140 160 180 200 220 240 0 50 100 150 200 250
A Mass number A



Basic features in nuclear structure Liquid-drop model

Variation from the semi-empirical mass formula

S. E. Mass Formula
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More bound systems at Z or N = 2,8, 20, 28, 50, 82, 126

magic numbers
= shell structure in nuclei as in atoms ?



Basic features in nuclear structure Shell model

Shell model
Developed in 1949 by M. Goeppert Mayer and H. Jensen
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Example
Shell model explains the higher stability at some Z and N

It predicts the spin and parity of ground state of most nuclei
and some of their excited levels, e.g. 'O and '"F
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Basic features in nuclear structure Shell model

Nowadays

Can we go beyond these models ?

Can we build ab initio models ?
i.e. based on first principles

@ nucleons as building blocks
@ realistic N-N interaction
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Ab initio nuclear models

A-body Hamiltonian
Nuclear-structure calculations : A nucleons (Z protons+N neutrons)

Relative motion described by the A-body Hamiltonian
A A
H = Z T; + Z V,‘j
i=1 j>i=1
= solve the A-body Schrédinger equation

{E,} is the nucleus spectrum
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Realistic N-N interactions
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Ab initio nuclear models

Light nuclei calculations
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Ab initio nuclear models

Three-body force
Need three-body forces to get it right. .

H= ZT+ZV,J+ Z Vi + -

Jj>i=1 k> j>i=1
But there is no such thmg as three-body force. ..

They simulate the non-elementary character of nucleons
= include virtual A resonances, N...

Phenomenological 3-body interaction fitted on A > 2 levels : IL2
Alternatively, derived from EFT
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Ab initio nuclear models

Effective Field Theory

EFT is an effective quantum field theory based on QCD symmetries
with resolution scale A that selects appropriate degrees of freedom :
nuclear physics is not built on quarks and gluons,

but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/A
@ gives an estimate of theoretical uncertainty
e naturally includes many-body forces
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Expansion of the EFT force
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Ab initio nuclear models

Solving the Schrédinger equation
Y usually developed on a basis {|®p,)} :
W) = D (D I¥,) )

]
Solving the Schroédinger equation reduces to matrix diagonalisation

(D HIP,) = ( Dy HIDy YDy [P,
[v]
= E, <(D[;1]|‘Pn>
= need to build an efficient set of basis states {|®y,;)}
Clear short review paper : [Bacca EPJ Plus 131, 107 (2016)]
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Ab initio nuclear models

Solving the Schrédinger equation on the lattice
Alternatively, solve Schrédinger equation numerically on the lattice
(like in lattice QCD)
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Review paper : [D. Lee Prog. Part. Nucl. Phys. 63 117 (2009)]
TALENT lecture in 2016
[see D. Lee’s talk on Monday]
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Example : oxygen isotopes
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[Hebeler et al. Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)]

Different ab initio models predict similar result
All require 3N forces to reproduce the dripline at *O
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Ab initio nuclear models

What happens far from stability ?
Liquid-drop and shell models are fair models of stable nuclei
What happens away from stability ?

In 80s Radioactive-lon Beams were developed
Enable study of nuclear structure
[see T. Nakamura on Thursday and I. Tanihata on Friday]

e are radioactive nuclei compact ?
e are shells conserved far from stability ?

Reactions involving radioactive nuclei useful in astrophysics
[see 2nd part,
C. Gustavino on Tuesday and A. Tumino on Friday]

20/29



Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes
e ISOL : Fire a proton at a heavy nucleus
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Where ?
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In-flight projectile fragmentation

Primary beam /7 : high-energy primary beam
”'“W"’"T’,Ié, Flr:m:::ght of heavy ions (e.g. '#0, *8Ca, U...)
separator on thin target of light element (Be or C)

= fragmentation/fission produces
_radoactve - MANY exotic fragments at = vpeam

ion beam

Thin target

'/c,)er
Q\ - I \ Sorted in fragment separator
=1\
Used for high-energy reactions (KO, breakup. . .)
[see T. Nakamura talk on Thursday]

Examples : RIKEN, NSCL (MSU), GSI, GANIL
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RIBF @ RIKEN

e-RI scattering with SCRIT

18GHZECRIS

LACII
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Radioactive-lon Beams

Superconducting Ring Cyclotron

Largest superconducting cyclotron in the world /
Delivers a U beam at 350AMeV
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Oddities far from stability Halo nuclei

Halo nuclei
Exotic structure discovered by |. Tanihata [PLB 160, 380 (1985)]
Very large matter radius (R > A'/3)
Seen as core + one or two neutrons at large distance
"L *Ph

e Light, neutron-rich nuclei
@ small S, or S,, e
One-neutron halo

1Be = 19Be + n
5C = 1C+n

Two-neutron halo
‘He=*He +n+n
Hi=%i+n+n

[T. Nakamura’s talk on Thursday and
posters of C. Hebborn, L. Moschini and N. Sokotowska on Monday]
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Oddities far from stability Change in shell structure

Change in magic numbers
Far from stability usual magic numbers disappear :

e '"He (Z =2,N = 8) is unbound

e 20 (Z = 8, N = 20) is unbound
and new magic numbers appear : N = 6,14, 16...
One possible explanation is the blocking effect of tensor force

[see I. Tanihata’s talk on Friday]

Tensor force is a component of NN interaction

Vi = vr(r) S 12

3
where S |, 4 ﬁ(sl “r)(Sy-1)— 8152

%(S-r)z—zs2
r

This interaction can lead to AL = 2 excitation in np pairs
which is responsible for Q, # 0 and u,; # 0
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Oddities far from stability Change in shell structure

Tensor blocking
Tensor force responsible for a significant part of a binding

[Myo et al. PTP 117, 257 (2007)]
In asymmetric nuclei (N > Z) these couplings are Pauli blocked
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Explains why magic N =8 — 6inHeand N =20 — 14,16in O
[see also T. Nakamura’s talk on Thursday]
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Summary
Liquid-drop and shell model describe qualitatively stable nuclei
Nowadays ab initio nuclear-structure models from first principles

RIBs enable us to study nuclear structure far from stability
New exotic structure discovered :

e halo nuclei
diffuse halo around a compact core

@ shell inversions or shell collapse
@ nuclei beyond the dripline (resonant ground state)
RIB can be used to study reactions of astrophysical interest. ..
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