57th International Winter Meeting on Nuclear Physics 21-25 January 2019 Bormio, Italy

¹⁵C STRUCTURE AND DYNAMICS: COUPLING HALO EFT TO REACTION MODELS FOR TRANSFER, BREAKUP AND RADIATIVE-CAPTURE

Laura Moschini¹, Jiecheng Yang^{1,2} and Pierre Capel^{3,1}

¹Physique Nucléaire et Physique Quantique (C.P. 229) Université libre de Bruxelles (ULB), B-1050 Brussels, Belgium ²Afdeling Kern-en Stralingsfysica, Celestijnenlaan 200d-bus 2418, 3001 Leuven, Belgium ³Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher Weg 45, D-55099 Mainz, Germany

DESCRIPTION OF ¹⁵C STRUCTURE WITHIN HALO EFT $^{15}C = ^{14}C(0^+) + n$ ¹⁵C is a one-neutron halo nucleus modeled as a compact ¹⁴C core with one loosely bound neutron > $1s_{1/2} E_{g.s.} = -1.218 \text{ MeV}$ **core-neutron interaction**

Effective 1-body Hamiltonian

$$H_0 = -\frac{\hbar^2}{2\mu_{14}c_n} \Delta + V_{14}c_n(\mathbf{r})$$

V_{cn} effective potential simulating

V_{cn} IN HALO EFT

Hammer, Ji, Phillips JPG 44, 103002 (2017) $@NLO V_{14}C_n(r) = V_0 e^{-\frac{1}{2r_0^2}} + V_2 r^2 e^{-\frac{1}{2r_0^2}}$

V2 and V0 adjusted to fit

We consider:

UNIVERSITÉ

DE BRUXELLES

LIBRE

> two $^{14}C+n$ potentials at NLO with $r_0 = 1.2$ and 1.5 fm > two potentials for the excited state to see if we have to go beyond NLO $- - r_0 = 1.2 \text{ fm}$

Eigenvalue problem

$$H_0\varphi_{n'lj}(E,\mathbf{r}) = E\varphi_{n'lj}(E,\mathbf{r})$$

Bound states wavefunctions radial behaviour $u_{n'lj}(r) \xrightarrow[r \to \infty]{} \mathcal{C}_{n'lj} e^{-k_{n'lj}r}$

C_{n'li} is the ANC, associated to the WF tail strength

> in s wave: binding energy (known experimentally) ANCs (extracted from peripheral transfer reaction, see below) > in p wave: δ_p (assumed nil) $V_{cn} = 0$ for | > 1

r0 to evaluate sensitivity to short range physics

ANC EXTRACTION FROM TRANSFER REACTION

Yang and Capel PRC98,054602(2018)

1. Determination of different potentials VCn @LO

$$V_{14}_{Cn}(r) = V_0 e^{-\frac{r^2}{2r_0}}$$

with different $r_0 \Rightarrow V_0$ adjusted neutron binding energy

with different ANCs

2. Generation of different wave functions $\varphi_{n'li}$

TRANSFER ¹⁴C(d,p)¹⁵C

Experiment: Mukhamedzhanov et al. PRC84, 024616 (2011)

FR-ADWA calculation Johnson and Tandy NPA235, 56 (1974)

Results

- ° Good agreement with data for $\theta < 12^{\circ}$
- ° The reaction does not depend on WF inner part

 $r_0 = 1.2 \text{ fm} \sim r_0 = 1.5 \text{ fm for } \theta < 12^\circ$

° For $\theta > 12^\circ$ short range physics shows up

dơ/dΩ 0.1 $--r_0 = 1.2 \text{ fm}$ - r₀ = 1.5 fm 0.01 exp. 0.001^l 70 20 30 10 40 60 $\theta_{c.m.}$ (deg)

> Three-body reaction model applied to ¹¹Be to solve GSI and RIKEN dB(E1)/dE discrepacy

3. Computation of corresponding $d\sigma_{th}/d\Omega$ for the transfer to ¹⁵C g.s. at $E_d = 17$ MeV

4. Comparison with the experimental cross section

Experiments: > GSI ELAB = 605 AMeV Datta Pramanik et al., PLB551 (2003) 63 Moschini and Capel arXiv:1807.07537 > RIKEN $E_{IAB} = 68$ AMeV Nakamura et al., PRC79 (2009) 035805 The relativistic Eikonal model Klein-Gordon equation in the T-P CM frame $\left[(\hbar c)^2 \nabla^2 + (\hbar c k)^2 - 2EV_{PT}\right] \Psi = 0$ Satchler, Nucl. Phys. A 540 (1992) 533 Adiabatic and eikonal approximations neglecting core excitations, to obtain the eikonal expression $\hat{\Psi}(\mathbf{b}, z, \mathbf{r}) = e^{i\chi(\mathbf{b}, \mathbf{s})} \Phi_{I_0 I_0 m_0}(E_0, \mathbf{r}) \text{ where } \chi(\mathbf{b}, \mathbf{s}) = \chi^N(\mathbf{b}, \mathbf{s}) + \chi^C(\mathbf{b}, \mathbf{s}) + \chi^C(\mathbf$ Nuclear phase: optical limit approximation Horiuchi, Suzuki, Capel and Baye, PRC 81 (2010) Coulomb phase: correction to avoid divergence Margueron, Bonaccorso and Brink, Nucl. Phys. A720 (2003) Lorentz boost VPT (b,z,r) $\rightarrow \gamma VPT$ (b, γz ,r) to express breakup cross section in P rest frame Winther and Alder, Nucl. Phys. A 319 (1979) $\frac{d\sigma_{bu}}{dE} = \frac{4\mu_{cf}}{\hbar^2 K} \frac{1}{2j_0 + 1} \sum_{m} \sum_{l'm} \int_0^\infty bdb |S_{kljm}^{m_0}(b)|^2 \text{ where } S_{kljm}^{m_0}(b) \sim \langle \varphi_{ljm}(E) | e^{i\chi^N} (e^{i\chi^C} - i\chi^C + i\chi^{FO}) e^{i\chi^C_{PT}} | \varphi_{l_0j_0m_0}(E_0) \rangle$ Results RIKEN @68 AMeV GSI @605 AMeV • Relativity is important in the high energy case $r_0 = 1.5 \text{ fm}$ — ANC uncertainty $r_0 = 1.2 \text{ fm}$ [•] Excellent agreement with data Exp. •• $r_0 = 1.2 \text{ fm (g.s.)}$ ANC uncertainty ek) ^o Band shows ANC uncertainty (MeV) 0.09 - $r_0 = 1.5 \text{ fm (g.s.)}$ Exp. $(\theta < 6^{\circ})$ W /q) no rel. corr. • The reaction does not depend on WF inner part Exp. $(\theta < 2.1^{\circ})$ •) ЩР__0.06 $r_0 = 1.2 \text{ fm} \sim r_0 = 1.5 \text{ fm}$ ^o No effect for the e.s. inclusion \Rightarrow for Coulomb breakup the Halo EFT expansion works fine at NLO E (MeV) E (MeV) RADIATIVE CAPTURE MODEL $^{14}C(n,\gamma)^{15}C$

Experiment: Reifarth et al., PRC77 (2008) 015804

 14 C and n merge to form 15 C by emitting a photon from ¹⁵C continuum (E) to one of its bound states (E_n)

Results

- ^o Good agreement with data for E>100 keV
- Band related to ANC uncertainty
- Cross section independent on internal wave function
- [•] Problem at low energy \Rightarrow more research on this point is needed!

1.4

 $r_0 = 1.2 \text{ fm}$ —

Using one single Halo-EFT description of ¹⁵C adjusted on CONCLUSIONS

- > binding energy \rightarrow known from experiment
- > ANC \rightarrow extracted analysing transfer reaction
- We reproduce data for different reactions: transfer, breakup (at intermediate and high energy) and radiative capture

In particular:

- Halo-EFT description works well @NLO
- \circ using the r₀ parameter we can test short-range physics (important only in transfer processes at large angles)