motivat	ibie folding pol				Summary and St	itioon
				<u>~</u>		

Nucleus-nucleus potentials from chiral effective field theory

Victoria Durant, P. Capel, L. Huth, A. B. Balantekin, A. Schwenk

57th International Winter Meeting on Nuclear Physics, January 22nd 2019

Motivation	Double-folding potential	Chiral EFT		Summary and Outlook
Motive	ation			

• Double-folding potentials provide potentials for nucleus-nucleus scattering, relevant for structure and astrophysical rections.

G.R. Satchler and W.G. Love, Phys. Rep. 55, 183 (1979)

Motivation	Double-folding potential	Chiral EFT	Elastic scattering	Fusion	Summary and Outlook
Motivati	on				

• In recent years there has been successful work using microscopic interactions based on G-matrix formalism.

T. Furumoto *et al.* Phys. Rev. C **85**, 044607 (2012)

T. Minomo *et al.*, Phys. Rev. C **93**, 014607 (2016)

Motivation	Double-folding potential	Chiral EFT		Summary and Outlook
Double	-folding mode			

- Double-folding procedure applied to calculate nucleus-nucleus potential using a realistic NN interaction.
- Nucleus-nucleus potential obtained by averaging the interaction over the matter distribution between colliding ions.

 $\mathbf{s} = \mathbf{R} - \mathbf{r}_1 + \mathbf{r}_2$

• Our work: explore double-folding potentials based on local chiral EFT interactions.

Motivation	Double-folding potential	Chiral EFT	Elastic scattering	Fusion	Summary and Outlook
Double	-folding mode	l - input			

• The nucleus-nucleus potential can be written as:

$$V_F = \sum_{i \in A_1, j \in A_2} \left[\langle ij | v_D | ij \rangle + \langle ij | v_{\mathsf{Ex}} | ji \rangle \right] = V_D + V_{\mathsf{Ex}} \,.$$

• Form of the double-folding potential

$$\begin{split} V_{\rm D}(\mathbf{r}) &= \sum_{i,j=n,p} \int \int \rho_1^i(\mathbf{r}_1) \, v_{\rm D}^{ij}(\mathbf{s}) \, \rho_2^j(\mathbf{r}_2) \, d^3 \mathbf{r}_1 d^3 \mathbf{r}_2 \,, \\ V_{\rm Ex}(\mathbf{r}, E_{\rm cm}) &= \sum_{i,j=n,p} \int \int \rho_1^i(\mathbf{r}_1, \mathbf{r}_1 + \mathbf{s}) \, v_{\rm Ex}^{ij}(\mathbf{s}) \rho_2^j(\mathbf{r}_2, \mathbf{r}_2 - \mathbf{s}) \exp\left[\frac{i\mathbf{k}(\mathbf{r}) \cdot \mathbf{s}}{\mu/m_N}\right] \, d^3 \mathbf{r}_1 d^3 \mathbf{r}_2 \,. \end{split}$$

- Two-parameter Fermi distribution as input density
 - L. C. Chamon et al., PRC, 85, 044607 (2012)

$$\rho_{p,n}(r) = \frac{\rho_0}{1 + \exp\left(\frac{r - R_{p,n}}{a_{p,n}}\right)}$$

Motivation	Double-folding potential	Chiral EFT	Elastic scattering	Fusion	Summary and Outlook
Chirol	FET				

W. Nazarewicz, J. Phys. G 43, 044002 (2016)

Motivation	Double-folding potential	Chiral EFT		Summary and Outlook
Chiral	EFT			

 Chiral EFT describes interactions between nucleons based on symmetries of QCD.

W. Nazarewicz, J. Phys. G 43, 044002 (2016)

Motivation	Double-folding potential	Chiral EFT	Elastic scattering	Fusion	Summary and Outlook	
Chiral I	EFT					

- Chiral EFT: expansion in powers of Q/Λ_b . $Q \sim m_{\pi} \sim 100$ MeV; $\Lambda_b \sim 500$ MeV.
- Long-range physics: given explicitly by pion exchanges.
- Short-range physics: contact interactions with low-energy constants (LECs) fit to πN, NN, 3N... data.
- Many-body forces and currents enter systematically.
- Allows for estimation of uncertainties.

Local form of chiral potentials

- Existing local potentials not suitable for double-folding potential calculations (too high momentum cutoff).
 A. Gezerlis *et al.*, PRL 111, 032501 (2013)
 A. Gezerlis *et al.*, PRC 90, 054323 (2014)
 J. Lynn *et al.*, PRL 113, 192501 (2014)
- Local regulator form: $f_{\text{long}}(r) = 1 - e^{-(r/R_0)^4}$
- Construction of new (softer) local potentials with cutoffs $R_0 = 1.4$ and 1.6 fm.
- Good reproduction of *NN* phase shifts vs. Nijmegen partial-wave analysis.

V. Durant, P. Capel, et al., PLB 782, 668 (2018)

Motivation

Summary and Outlool

Form of the double-folding potential

V. Durant, P. Capel, et al., PLB 782, 668 (2018)

- Clear systematics in the order-by-order expansion.
- Small sensitivity to the r-space cutoff R_0 .

Motivation	Double-folding potential	Chiral EFT	Elastic scattering	Fusion	Summary and Outlook
			le e ceteur	ta la	
Imagina	ary part of nu	cleus-nuc	leus potent	ials	

- The resulting double-folding potential, V_F , is purely real.
- To describe elastic scattering
 - \rightarrow we need an absorptive imaginary contribution to the potential.
- First approximation: imaginary part proportional to the real double-folding potential motivated by D. Pereira *et al.*, PLB **670**, 330 (2009)

$$U_F(r, E_{\rm cm}) = (1 + iN_W)V_F(r, E_{\rm cm})$$

• Typical choices:
$$N_W = 0.6 - 0.8$$

Summary and Outlook

Elastic scattering cross sections

V. Durant, P. Capel, et al., PLB 782, 668 (2018)

- Good agreement with the data without any adjustment.
- Clear systematics in the order-by-order expansion.
- Small sensitivity to the r-space cutoff R_0 .

Elastic scattering cross sections

V. Durant, P. Capel, et al., PLB 782, 668 (2018)

- For each R_0 , the bands give the $N_W = 0.6 0.8$ range.
- Good agreement with experimental data and phenomenological potentials Khoa *et al.*, NPA **672**, 387 (2000)
- Different collision energies using the same input *NN* potential.
- At large momentum transfer: experimental points close to the spread obtained for N_W.

Elastic scattering cross sections

- For each R_0 , the bands give the $N_W = 0.6 0.8$ range.
- Good agreement with experimental data and phenomenological potentials Khoa et al., NPA 672, 387 (2000)
- Different collision energies using the same input *NN* potential.
- At large momentum transfer: experimental points close to the spread obtained for N_W.
- The impact of different density profiles is smaller than the impact of the imaginary part.

Astrophysical S-factor

- Oxygen fusion is crucial in medium-mass nuclei burning chains.
- Due to Coulomb repulsion, cross sections drop rapidly when *E_{cm}* decreases.
- It is useful to define the S-factor, which accounts for the Coulomb repulsion.

$$S(E) = Ee^{2\pi\eta}\sigma_{fus}(E)$$
; $\eta = rac{Z_P Z_T e^2}{4\pi\epsilon_0 \hbar v}$

Nuclear Reactions for Astrophysics: Principles, Calculations and Applications of Low-Energy Reactions, Ian Thompson and Filomena Nunes

Motivation Double-folding potential Chiral EFT Elastic scattering Fusion Summary and Outlook Astrophysical <u>S-factor for ¹⁶O+</u>¹⁶O

• At low energy, fusion takes place through quantum tunneling of $V_{\text{eff}}(r, E_{\text{cm}}) = V_{\text{F}}(r, E_{\text{cm}}) + V_{\text{Coul}}(r) + \frac{l(l+1)}{2\mu r^2}$.

V. Durant, P. Capel, et al., PLB 782, 668 (2018)

- $S(E) = Ee^{2\pi\eta}\sigma_{fus}(E)$.
- Systematics in the order-by-order expansion.
- Small sensitivity to the *r*-space cutoff *R*₀.
- Agreement with experiment and systematic order-by-order behavior.

Motivation	Double-folding potential	Chiral EF I	Elastic scattering	Summary and Outlook
Summa	ary and Outlo	ok		

- New soft local chiral interactions to construct double-folding potentials.
- Applications to ¹⁶O-¹⁶O elastic scattering in good agreement with experiment without adjustments.
- Important role of the imaginary part for elastic scattering.
- Similar good agreement for ¹⁶O+¹⁶O fusion.
- Observables show small sensitivity to the cutoff of the *NN* interaction.

Motivation	Double-folding potential	Chiral EFT	Elastic scattering	Fusion	Summary and Outlook
Summ	ary and Outlo	ok			

- New soft local chiral interactions to construct double-folding potentials.
- Applications to ¹⁶O-¹⁶O elastic scattering in good agreement with experiment without adjustments.
- Important role of the imaginary part for elastic scattering.
- Similar good agreement for ¹⁶O+¹⁶O fusion.
- Observables show small sensitivity to the cutoff of the *NN* interaction.

Outlook

- Improvement of the description of the imaginary potential.
- Calculation beyond Hartree-Fock level.
- Extension to non closed-shell nuclei.
- Inclusion of 3N interactions.

Motivation	Double-folding potential	Chiral EFT	Elastic scattering	Fusion	Summary and Outlook
Summ	ary and Outlo	ok			

- New soft local chiral interactions to construct double-folding potentials.
- Applications to ¹⁶O-¹⁶O elastic scattering in good agreement with experiment without adjustments.
- Important role of the imaginary part for elastic scattering.
- Similar good agreement for ¹⁶O+¹⁶O fusion.
- Observables show small sensitivity to the cutoff of the *NN* interaction.

Outlook

- Improvement of the description of the imaginary potential.
- Calculation beyond Hartree-Fock level.
- Extension to non closed-shell nuclei.
- Inclusion of 3N interactions.

Thank you for your attention!

Appendix: phenomenological imaginary potentials

