

57th International Meeting on Nuclear Physics January 21-25, 2019 - Bormio (Italy) Fausto CASABURD

57° International Meeting on Nuclear Physics January 21- 25, 2019 Bormio (Italy)

<u>Detection of primary photons in high energy cosmic</u> <u>rays using Cherenkov Imaging and surface detectors.</u>

Fausto CASABURO «La Sapienza» University of Rome.

SAPIENZA Università di Roma

57th International Meeting on Nuclear Physics January 21-25, 2019 - Bormio (Italy) Fausto CASABURO

Detection of primary photons in high energy cosmic rays using Cherenkov Imaging and surface detectors

LHAASO:

- Daochen 4410m a.s.l. (China) within 2021;
- Observation of secondary particles of the showers by surface detectors;
- High duty cycle and Field of view.

- Simulations
- Conclusions
- CTA:
- La Palma 2396m a.s.I Canary Islands and Paranal Observatory 2635m a.s.l in Chile (south site)
- Observation of Cherenkov light produced in ٠ atmosphere by showers;
- High angular resolution and energy resolution.

Thesis goals:

- To analyze the opportunities given by LHAASO and CTA in order to research y rays;
- To study differences between showers induced by primary ^y and showers induced by primary p.

Thesis importance:

To reject hadronic background and to acquire the signal.

Simulations:

- Realized by CORSIKA
- Observation level 4300m a.s.l. (LHAASO);
- Photons and protons [1 GeV; 1 TeV];
- Energy spectrum simulated:

$$\frac{dN_{part}}{dE} = c \cdot E^{-2}$$

Surface detector

CTA

Cherenkov Imaging Telescopes

Shower

Cherenkov light

SAPIENZA Università di Roma

57th International Meeting on Nuclear Physics January 21-25, 2019 - Bormio (Italy) Fausto CASABURD

Simulations: Lateral distribution density at 10 and 600m from the core

Conclusions

SAPIFN7A Università di Roma

57th International Meeting on Nuclear Physics January 21-25, 2019 - Bormio (Italy) Fausto CASABURO

Simulations: muonic component

 e^{\pm} and μ^{\pm} mean number, primary particles energies \approx [31GeV - 766GeV] 766.52 GeV

- Conclusions
- **Results:** 260.93 GeV 10 Increasing energy 138.63 Ge e[±] and µ[±] 69.32 **G**eV number increases at <u>30.</u>54 GeV 1 rising energy;
- Muonic . component is higher in p showers;
- µ[±] number ٠ ratio depends on primary particles energies.

SAPIENZA UNIVERSITÀ DI ROMA

57th International Meeting on Nuclear Physics January 21-25, 2019 - Bormio (Italy) Fausto CASABURO

Conclusions: Showers simulations

Considerations:

- Results have been obtained by Monte Carlo simulations based on current knowledge about cosmic rays interactions in atmosphere;
- Introduction
- Simulations
- Conclusions
- Observations made by LHAASO and CTA will allow to acquire new data to compare them with these simulations in order to improve current models;

Result relevance:

HAASO

- γ- hadrons discrimination thanks to algorithms based on:
 - a. Differences in lateral distribution of the showers in atmosphere;
 - Lateral distribution at observation level of the particles around the shower core;
 - c. Number of secondary μ^{\pm} .

Models for the trigger

LHAASO Layout

CTA Telescopes

«La quale, se non v'è dispiaciuta affatto, vogliatene bene a chi l'ha scritta, e anche un pochino a chi l'ha raccomodata. Ma se in vece fossimo riusciti ad annoiarvi, credete che non s'è fatto apposta.»

57th International Meeting on Nuclear Physics January 21-25, 2019 - Bormio (Italy) Fausto CASABURO

Thank you for your attention.

