

57th International Winter Meeting on Nuclear Physics - Bormio, Italy

Breaking and restoration of rotational symmetry in the spectrum of α -conjugate nuclei on the lattice

PRESENTATION SESSION

23rd January 2019

G. STELLIN, S. ELHATISARI, U.-G. MEISSNER

Rheinische Friedrich-Wilhelms- Universität Bonn Helmholtz Institut für Strahlen- und Kernphysik U.-G. Meißner's Workgroup

Motivation

We investigate rotational symmetry breaking in the low-energy spectra of

light α -conjugate nuclei: ⁸Be, ¹²C, ¹⁶O, ...

on a cubic lattice G.S. et al. EPJ A 54, 232 (2018). In particular, we aim at

identifying lattice eigenstates in terms of SO(3) irreps

⇒ Phys. Lett. B 114, 147-151 (1982), PRL 103, 261001 (2009)

♣ exploring the dependence of physical observables on spacing and size \implies PRD 90, 034507 (2014), PRD 92, 014506 (2015)

developing memory-saving and fast algorithms for the diagonalization of the lattice Hamiltonian

testing techniques for the suppression of discretization artifacts

 \implies Lect. Notes in Phys. 788 (2010)

Applications

Nuclear Lattice EFT: ab initio nuclear structure PRL 104, 142501 (2010), PRL 112, 102501 (2014), PRL 117, 132501 (2016) and scattering Nature 528, 111-114 (2015)

Appendiz

The Hamiltonian of the system

The macroscopic α -cluster model¹ of B. Lu et al. PR D 90, 034507 (2014) is adopted \implies nuclei are decomposed into *M* structureless α -particles

$$H = -\frac{\hbar^2}{2m_\alpha} \sum_{i=1}^M \nabla_i^2 + \sum_{i>j=1}^M V_C(\mathbf{r}_{ij}) + V_{AB}(\mathbf{r}_{ij}) + \sum_{i>j>k=1}^M V_T(\mathbf{r}_{ij}, \mathbf{r}_{ik}, \mathbf{r}_{jk})$$

with $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$. The potentials are of the type

Gaussian Ali-Bodmer² Coulomb² $V_0 e^{-\lambda (r_{ij}^2 + r_{ik}^2 + r_{jk}^2)}$ $V_a f e^{-\eta_a^2 r_{ij}^2} + V_r e^{-\eta_r^2 r_{ij}^2}$ $\frac{4e^2}{4\pi\epsilon_0}\frac{1}{r_{ii}}\operatorname{erf}\left(\frac{\sqrt{3}r_{ij}}{2R_{\alpha}}\right)$ with $\lambda = 0.00506 \text{ fm}^{-2}$, with $\eta_r^{-1} = 1.89036$ fm, with $R_{\alpha} = 1.44$ fm $V_0 = -4.41$ MeV for ${}^{12}C^3$ $V_r = 353.508 \text{ MeV}$ and $\eta_a^{-1} = 2.29358 \text{ fm}$, rms radius of the ⁴He s.t. $E_{g.s.} = -\Delta E_{Hoyle}$ NB: Erf adsorbs the $V_a = -216.346 \,\mathrm{MeV}$ and $V_0 = -11.91$ MeV for ${}^{16}O^4$ singularity at r = 0auxiliary param. f = 1s.t. $E_{g,s_1} = -\Delta E_{4\alpha}$

¹G.S. et al. JP G 43, 8 (2016), ²NP 80, 99-112 (1966) , ³Z. Physik A 290, 93-105 (1979) , ⁴G.S. (2017)

Breaking and restoration of rotational symmetry on the lattice

The lattice environment

The configuration space in relative d.o.f. of an M - body physical system into a cubic lattice reduces to

$$\mathbb{R}^{3M-3} \longrightarrow N^{3M-3}$$

where: $N \Longrightarrow$ number of points per dimension (\equiv lattice size) $a \Longrightarrow$ lattice spacing and $L \equiv Na$

Consequences: discretization effects

- the action of differential operators is represented via finite differences: ⇒ Lect. Notes in Phys. 788 (2010)
- 2. breaking of Galiean invariance
- 3. breaking of continuous translational invariance (free-particle case)

Appendiz

The lattice environment

The configuration space in relative d.o.f. of an M - body physical system into a cubic lattice reduces to

$$\mathbb{R}^{3M-3} \longrightarrow N^{3M-3}$$

where:

 $N \Longrightarrow$ number of points per dimension (\equiv lattice size) $a \Longrightarrow$ lattice spacing

and **finite-volume effects** on physical observables

With periodic boundary conditions:

- 1. configuration space becomes isomorphic to a torus in 3M 3-dimensions
- 2. lattice momenta become $\mathbf{p} = \hbar \frac{2\pi \mathbf{n}}{Na}$ where **n** is a vector of integers

Symmetries

On the lattice SO(3) symmetry reduces to the invariance under the cubic group O.

Accordingly

«Only eight [five: A_1 , A_2 , E, T_1 , T_2] different possibilities exist for rotational classification of states on a cubic lattice. So, the question arises: how do these correspond to the angular momentum states in the continuum? [...] To be sure of higher spin assignents and mass predictions it seems necessary to follow all the relevant irreps simultaneously to the continuum limit. »

R.C. Johnson, Phys. Lett. B 114, 147-151, (1982).

Integer spin irreps D^{ℓ} of SO(3) decompose into irreps of \mathcal{O} as follows:

I

$$D^{0} = A_{1}$$

$$D^{1} = T_{1}$$

$$D^{2} = E \oplus T_{2}$$

$$D^{3} = A_{2} \oplus T_{1} \oplus T_{2}$$

$$D^{4} = A_{1} \oplus E \oplus T_{1} \oplus T_{2}$$

$$D^{5} = E \oplus T_{1} \oplus T_{1} \oplus T_{2}$$

$$D^{6} = A_{1} \oplus A_{2} \oplus E \oplus T_{1} \oplus T_{2} \oplus T_{2}$$

Symmetries

Degenerate states belonging to the same \mathcal{O} irrep can be labeled with the irreps I_z of the cyclic group \mathcal{C}_4 , generated by an order-three element of \mathcal{O} (e.g. $\mathcal{R}_z^{\pi/2}$):

$$\begin{array}{cccc} \mathrm{SO}(3) &\supset & \mathrm{SO}(2) \\ \downarrow & \downarrow & \downarrow \\ l & m, \end{array} \implies \begin{array}{cccc} \mathcal{O} &\supset & \mathcal{C}_4 \\ \downarrow & \downarrow & \downarrow \\ \Gamma & & I_z, \end{array}$$

Conversely, the discrete symmetries of the Hamiltonian are preserved:

time reversal, parity, exchange symmetry

Applications

Within an iterative approach for the diagonalization of \mathcal{H} , the states belonging to an irrep Γ of a point group \mathcal{G} can be extracted applying the projector

$$P_{\Gamma} = \sum_{g \in \mathcal{G}} \chi_{\Gamma}(g) D(g)$$

where D(g) is a representation of dimension 3M - 3 for the operation $g \in \mathcal{G}$

Finite volume energy corrections

LO finite volume energy corrections for relative two-body bosonic states with reduced mass μ , angular momentum ℓ and belonging to the Γ irrep of O are given by PRL 107, 112011 (2011)

$$\Delta E_{B}^{(\ell,\Gamma)} \equiv E_{B}^{(\ell,\Gamma)}(\infty) - E_{B}^{(\ell,\Gamma)}(L) = \beta \left(\frac{1}{\kappa_{0}L}\right) |\gamma|^{2} \frac{e^{-\kappa_{0}L}}{\mu L} + \mathcal{O}\left(e^{-\sqrt{2}\kappa_{0}N}\right)$$

with

 $\gamma \Rightarrow$ asymptotic normalization constant

 $\kappa_0 \Rightarrow$ binding momentum and $\beta(x) \Rightarrow$ a polynomial

ℓ	Г	$\beta(x)$
0	A_1^+	-3
1	T_{1}^{-}	+3
	T_2^+	$30x + 135x^2 + 315x^3 + 315x^4$
2	E^{+}	$-\frac{1}{2}(15+90x+405x^2+945x^3+945x^4)$
	A_2^-	$315x^2 + 2835x^3 + 122285x^4 + 28350x^5 + 28350x^6$
3	T_2^{-}	$-\frac{1}{2}(105x + 945x^2 + 5355x^3 + 19530x^4 + 42525x^5 + 42525x^6)$
	T_{1}^{2}	$-\frac{1}{2}(14 + 105x + 735x^2 + 3465x^3 + 11340x^4 + 23625x^5 + 23625x^6)$

Although no analythic LO FVEC formula for the three-body case exists, results for zerorange potentials PRL 114, 091602 (2015) and the asymptotic (\equiv large *N*) behaviour are available Phys. Lett. B 779, 9-15 (2018).

Finite volume energy corrections

LO finite volume energy corrections for relative two-body bosonic states with reduced mass μ , angular momentum ℓ and belonging to the Γ irrep of O are given by PRL 107, 112011 (2011)

$$\Delta E_{B}^{(\ell,\Gamma)} \equiv E_{B}^{(\ell,\Gamma)}(\infty) - E_{B}^{(\ell,\Gamma)}(L) = \beta \left(\frac{1}{\kappa_{0}L}\right) |\gamma|^{2} \frac{e^{-\kappa_{0}L}}{\mu L} + \mathcal{O}\left(e^{-\sqrt{2}\kappa_{0}N}\right)$$

with $\gamma \Rightarrow$ asymptotic normalization constant $\kappa_0 \Rightarrow$ binding momentum and $\beta(x) \Rightarrow$ a polynomial **Multiplet averaging** of the energies. \Rightarrow the finite volume energy corrections assume an universal form, independent in magnitude on the SO(3) irreps

$$\begin{split} E_{\infty}(\ell_A^p) - E_L(\ell_A^p) \Big|_{L^0}^{L^0} &= (-1)^{\ell+1} 3 |\gamma|^2 \frac{e^{-\kappa_0 L}}{\mu L} \quad \text{with} \quad E(\ell_A^p) \equiv \sum_{\Gamma \in \mathcal{O}} \frac{\chi^{\Gamma}(1)}{2\ell+1} E_B^{(\ell^p, \Gamma)}(L) \\ \text{at LO, i.e. order } \exp(-\kappa_0 L). \end{split}$$

where: $\Gamma \Rightarrow$ irrep of the cubic group $\chi^{\Gamma}(\mathbb{1}) \Rightarrow$ character of Γ w.r.t. the identity conjugacy class ($\equiv \dim \Gamma$) $P \Rightarrow$ eigenvalue of the inversion operator \mathscr{P}

Finite volume energy corrections including Coulomb interaction Leading Coulomb corrections for the energies of states with $\ell = 0$ (A_1) describing two spinless singly-charged particles in a finite volume are given by $\Delta E_{B,QED}^{(0,A_1)} \equiv E_{B,QED}^{(0,A_1)}(\infty) - E_{B,QED}^{(0,A_1)}(L) = \frac{\alpha}{\pi L} \mathcal{I} + \mathcal{O}(\alpha^2) \qquad \Longrightarrow \text{PRD 90, 074511 (2014)} \\ \mathcal{I} = \sum_{n\neq 0}^{\Lambda_n} \frac{1}{|\mathbf{n}|^2} - 4\pi \Lambda_n = -8.9136$ where: $\alpha = e^2/4\pi \Rightarrow \text{fine structure constant} \\ \Lambda_n = N\Lambda/2\pi \text{ with } \Lambda \Rightarrow \text{UV lattice momentum cutoff}$ $\mathbf{n} \Rightarrow \text{three-vector of integers}$

As in the case without QED, FV corrections for the $\ell = 0$ state are negative

In presence of Coulomb interaction, the infinite-volume bound state energy $E \equiv -E_B^{(0,A_1)}(\infty) = -\kappa_0^2/2\mu$ and binding momentum κ_0 is modified into

$$E_{B,\text{QED}}^{(0,A_1)}(\infty) = \frac{\kappa_0^2}{2\mu} - \frac{2\alpha\kappa_0}{1-\kappa_0r_0} \left[\gamma_E + \log\left(\frac{\alpha\mu}{2\kappa_0}\right)\right]$$

where: $r_0 \Rightarrow$ effective range of strong interactions $\gamma_E \approx 0.57721 \Rightarrow$ Euler-Mascheroni constant

Remark: in absence of further forces there's no QED contribution at $O(\alpha)$ Outlook: extension of the Coulomb FVEC formula to states with $\ell \ge 1$

Breaking and restoration of rotational symmetry on the lattice

The low-energy ⁸Be spectrum

Increasing the parameter V_a of V_{AB} up to 130% of its eigenvalue (f = 1.3), the finite volume behaviour of the energies of the 0_1^+ and 2_1^+ bound states can be inspected:

♣ Remark: for $N \gtrsim 27$ the sign of the FVECs agrees with the $\Delta E_B^{(\ell,\Gamma)}$ formulas for $\ell = 0$ and 2, even if Coulomb corrections dominate outside the strong interaction region

Introduction

Appendix

The low-energy ⁸Be spectrum

The further increase of the parameter V_a of V_{AB} up to 250% (f = 2.5) permits to extend the FV analysis to the $\ell = 4$ and 6 states \implies the 4^+_2 and 6^+_1 multiplets (cf. magnification)

Breaking and restoration of rotational symmetry on the lattice

Appendiz

The low-energy ¹²C spectrum

Since the nucleus is naturally bound, no artificial increase of the strength parameter V_0 of V_{AB} is necessary for the study of the lowest 0^+_1 , 2^+_1 and 3^-_1 states.

♣ Remark: the spacing is larger (a = 0.5 fm) \implies discretization effects: 10^{-2} - 10^{-3} MeV.

Breaking and restoration of rotational symmetry on the lattice

The low-energy ⁸Be spectrum: the 0_1^+ and 2_1^+ multiplets Now we consider the average values of the squared total angular momentum operator \mathcal{L}^2 , in relative coordinates. Fixing a = 0.5 fm, for the 0_1^+ and 2_1^+ states (f = 1.3) we find:

A Remark: The average values of \mathcal{L}^2 for the $0^+_{A_1}$, 2^+_E and $2^+_{T_2}$ states smoothly converge to the eigenvalues equal to 0 and $6\hbar^2$, modulo residual discretization errors: $\langle \Xi \rangle = \Xi$

The low-energy ⁸Be spectrum: the 4^+_2 multiplet

In the f = 2.5 case, by fixing a = 0.25 fm discretization effects for the 4_2^+ multiplets reduce to $\approx 10^{-4} \hbar^2$. Multiplet-averaging enhances convergence.

The low-energy ⁸Be spectrum: the 6_1^+ multiplet

In the f = 2.5 case, fixing a = 0.25 fm residual discretization effects for the 6_1^+ multiplets amount to $\approx 10^{-4}\hbar^2$. Multiplet-averaging enhances convergence.

Remark: for $L \gtrsim 25$ $|\Delta \mathcal{L}^2| \propto \exp(m_{\kappa}L)$ with $m_{\kappa} < 0$

Breaking and restoration of rotational symmetry on the lattice

Appendiz

The low-energy ¹²C spectrum

As a consequence of the isotropy of the potentials, the nucleus has an equilateral triangular equilibrium configuration, i.e. $\langle r_{12} \rangle = \langle r_{23} \rangle \equiv \langle r_{13} \rangle \equiv \mathcal{R}$.

Restoring the V_a parameter of the Ali-Bodmer potential to its default value (f = 1.0) and fixing the spacing to a = 0.50 fm, we compute the average values of \mathcal{L}^2 on the 0^+_1 , 2^+_1 and 3^-_1 multiplets of states.

Remark: residual discretization errors are sensibly larger ($\approx 10^{-1} - 10^{-2}\hbar^2$).

Discretization effects: a cover story...

Discretization effects on energy

Unlike finite-volume effects, the dominant behaviour of dicretization corrections on energy, $\Delta E_B(a)$, is unknown.

Nevertheless: some extrema of $E_B(a)$ can be associated to the maxima of the probability density function corresponding to the given energy eigenstate.

NB: If the primary maxima of the pdf lie at distance d^* w.r.t. the origin, the most probable $\alpha - \alpha$ separation \mathcal{R}^* is given by d^*

Breaking and restoration of rotational symmetry on the lattice

• (1) • (

Appendiz

Discretization effects on energy

If the all pdf maxima are absolute and lie along the coordinate axes, \exists a value of *a* s.t. all the maxima of the pdf are included in the cubic lattice.

In particular: for $a = d^* \Longrightarrow E_B(a)$ is minimized and if $|\Psi_B^{\text{Max}}|^2 \gg |\Psi_B(\mathbf{r})|^2$ where $|\mathbf{r}| = nd^*$ and $n \ge 2 \Longrightarrow \langle \mathcal{R} \rangle \approx d^*$ and $\langle V \rangle$ is approximately minimized

20 -20

у

 $2^+_1 \to (I_z = 0)$

Appendix

Discretization on ⁸Be: the $2^+_1 E$ states

 $I_z = 0 \text{ Pdf}$: two principal maxima along the z axis, located at a distance $d^* = 2.83$ fm from the origin.

$$\implies E_B(a)$$
 minima are, then, predicted to lie at

$$a = \frac{d^*}{n}$$
 with $n \ge 1$, i.e. $a \approx 2.83, 1.42, 0.94, ...$

In practice: two E_B minima at $a \approx 1.36$ and 2.85 fm are observed

Breaking and restoration of rotational symmetry on the lattice

20~

-20 -20

N

Appendiz

Discretization on ⁸Be: the $2^+_1 E$ states

 $I_z = 0$ Pdf : two principal maxima along the z axis, located at a distance $d^* = 2.83$ fm from the origin.

 \implies $E_B(a)$ minima are, then, predicted to lie at

$$a = \frac{d^*}{n}$$
 with $n \ge 1$, i.e. $a \approx 2.83, 1.42, 0.94, ...$

In practice: two E_B minima at $a \approx 1.36$ and 2.85 fm are observed

Discretization on ⁸Be: the 2^+_1 *E* states

 $I_z = 2 \text{ Pdf}$: 4 principal maxima on the x and y axes, located at a distance $d^* = 2.83$ fm from the origin.

 $E_B(a)$ minima are, then, predicted to lie at

$$a = \frac{d^*}{n}$$
 with $n \ge 1$, i.e. $a \approx 2.83, 1.42, 0.94, ...$

In practice: two E_B minima at $a \approx 1.36$ and 2.85 fm are observed

Still:

 $\mathcal{V} \approx -21.21 \text{ MeV} @ a = d^*$ ≈ -21.40 MeV @ $a \approx 2.70$ fm vmin

Discretization on ⁸Be: the 2^+_1 *E* states

 $I_z = 2 \text{ Pdf}$: 4 principal maxima on the x and y axes, located at a distance $d^* = 2.83$ fm from the origin.

 $E_B(a)$ minima are, then, predicted to lie at

$$a = \frac{d^*}{n}$$
 with $n \ge 1$, i.e. $a \approx 2.83, 1.42, 0.94, ...$

In practice: two E_B minima at $a \approx 1.36$ and 2.85 fm are observed

Discretization on ⁸Be: the $6_1^+ A_2$ state

 $I_z = 2 \text{ Pdf}$: four equidistant couples of principal maxima separated by an angle $\gamma \approx 34.2^{\circ}$ and located at a distance $d^* \approx 2.31$ fm from the origin in the *x*, *y* and z = 0 planes.

 $6^+ A_2 (I_2 = 2)$

 $6^+ A_2 (I_z=2)$

Appendix

Discretization on ⁸Be: the $6_1^+ A_2$ state

Considering the inclusion conditions of a couple of maxima in the 1st quadrant of the *xy* plane ($n \ge 1$):

$$a_x = \frac{d^*}{n} \cos\left(\frac{\pi}{4} - \frac{\gamma}{2}\right),$$
 i.e $a_y \approx 2.04, 1.02, 0.68...$

$$a_y = \frac{d^*}{n} \sin\left(\frac{\pi}{4} - \frac{\gamma}{2}\right), \text{ i.e } a_y \approx 1.08, 0.54, 0.36...$$

In practice: an E_B minimum at $a \approx 1.03$ fm is observed !

a [fm]

1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8

2.5

2.25

Discretization on ⁸Be: the $6_1^+ A_2$ state

Considering the inclusion conditions of a couple of maxima in the 1st quadrant of the *xy* plane ($n \ge 1$):

$$a_x = \frac{d^*}{n} \cos\left(\frac{\pi}{4} - \frac{\gamma}{2}\right), \text{ i.e } a_y \approx 2.04, 1.02, 0.68...$$

$$a_y = \frac{d^*}{n} \sin\left(\frac{\pi}{4} - \frac{\gamma}{2}\right),$$
 i.e $a_y \approx 1.08, 0.54, 0.36...$

In practice: an E_B minimum at $a \approx 1.03$ fm is observed !

Breaking and restoration of rotational symmetry on the lattice

Appendiz

Other low-energy ⁸Be wavefunctions

Conclusions & Outlook

The macroscopic α -cluster model in PRD 90, 034507 (2014) has been applied to the ⁸Be and ¹²C on the lattice. A fully-parallel method based on the Lanczos iteration has been adopted for the diagonalization of the Hamiltonian, allowing for

1. the exploration of SO(3) breaking effects on a sample of bound eigenstates: 0^+ , 2^+ , 4^+ and 6^+ for the ⁸Be and 0^+ , 2^+ and 3^- for the ¹²C;

Conclusions & Outlook

The macroscopic α -cluster model in PRD 90, 034507 (2014) has been applied to the ⁸Be and ¹²C on the lattice. A fully-parallel method based on the Lanczos iteration has been adopted for the diagonalization of the Hamiltonian, allowing for

- 1. the exploration of SO(3) breaking effects on a sample of bound eigenstates: 0^+ , 2^+ , 4^+ and 6^+ for the ⁸Be and 0^+ , 2^+ and 3^- for the ¹²C;
- 2. a test for the capability of the squared total angular momentum operator of identifying the lattice eigenstates in terms of the label of SO(3) irreps;

Conclusions & Outlook

The macroscopic α -cluster model in PRD 90, 034507 (2014) has been applied to the ⁸Be and ¹²C on the lattice. A fully-parallel method based on the Lanczos iteration has been adopted for the diagonalization of the Hamiltonian, allowing for

- 1. the exploration of SO(3) breaking effects on a sample of bound eigenstates: 0^+ , 2^+ , 4^+ and 6^+ for the ⁸Be and 0^+ , 2^+ and 3^- for the ¹²C;
- 2. a test for the capability of the squared total angular momentum operator of identifying the lattice eigenstates in terms of the label of SO(3) irreps;
- 3. an empirical derivation of the asymptotic behaviour of the corrections for the average values of \mathcal{L}^2 due to finite volume and discretization effects.

Conclusions & Outlook

The macroscopic α -cluster model in PRD 90, 034507 (2014) has been applied to the ⁸Be and ¹²C on the lattice. A fully-parallel method based on the Lanczos iteration has been adopted for the diagonalization of the Hamiltonian, allowing for

- 1. the exploration of SO(3) breaking effects on a sample of bound eigenstates: 0^+ , 2^+ , 4^+ and 6^+ for the ⁸Be and 0^+ , 2^+ and 3^- for the ¹²C;
- 2. a test for the capability of the squared total angular momentum operator of identifying the lattice eigenstates in terms of the label of SO(3) irreps;
- 3. an empirical derivation of the asymptotic behaviour of the corrections for the average values of \mathcal{L}^2 due to finite volume and discretization effects.

Perspectives and hints

- ♠ Extension of the analysis to the ¹⁶O ⇒ usage of the existing *exact* GPU codes for small volumes (memory issues!) and benchmarks as well as Metropolis Monte Carlo wordline or auxiliary field algorithms for large volumes (under development);
- ♦ Derivation of an analytical formula for the leading order FV energy corrections for bound states with $\ell \ge 1$ in presence of a Coulomb-type potential.

Conclusion

Rotational Symmetry

On the lattice 3-dim rotational symmetry reduces to a subgroup of SO(3), the cubic group \mathcal{O} . A process of descent in symmetry takes place: $\alpha = x$; y; z

continuum, ∞ – volume : $SO(3) \Longrightarrow [H, L^2] = 0, [H, L_{\alpha}] = 0$

₩

continuum, finite volume : $\mathscr{O} \subset SO(3) \Longrightarrow [H, L^2] = 0, [H, L_{\alpha}] \neq 0$

↓

discrete, finite volume : $\mathscr{O} \subset SO(3) \Longrightarrow [\mathcal{H}, \mathcal{L}^2] \neq 0, [\mathcal{H}, \mathcal{L}_{\alpha}] \neq 0$

Accordingly

«Only eight [five: A_1 , A_2 , E, T_1 , T_2] different possibilities exist for rotational classification of states on a cubic lattice. So, the question arises: how do these correspond to the angular momentum states in the continuum? [...] To be sure of higher spin assignents and mass predictions it seems necessary to follow all the relevant irreps simultaneously to the continuum limit. »

R.C. Johnson, Phys. Lett. B 114, 147-151, (1982).

Discretization on ⁸Be: the $2^+_1 T_2$ states

 $I_z = 2$ Pdf: four principal maxima in the intersection betw. the z = 0 plane and the $x = \pm y$ planes, s.t. $d^* = 2.83$ fm.

 \Rightarrow $E_B(a)$ minima are, then, predicted to lie at

$$a = \frac{\sqrt{2}}{2} \frac{d^*}{n}$$
 with $n \ge 1$, i.e. $a \approx 2.02, 1.01, 0.67, ...$

In practice: two E_B minima at $a \approx 1.05$ and 2.02 fm are observed

Discretization on ⁸Be: the $2^+_1 T_2$ states

 $I_z = 2$ Pdf: four principal maxima in the intersection betw. the z = 0 plane and the $x = \pm y$ planes, s.t. $d^* = 2.83$ fm.

 \Rightarrow $E_B(a)$ minima are, then, predicted to lie at

$$a = \frac{\sqrt{2}}{2} \frac{d^*}{n}$$
 with $n \ge 1$, i.e. $a \approx 2.02, 1.01, 0.67, ...$

In practice: two E_B minima at $a \approx 1.05$ and 2.02 fm are observed

 $2^+_1 T_2 (I_z=2)$

 $2_{1}^{+} T_{2} (I_{a}=2)$

Appendix

Discretization on ⁸Be: the 2_1^+ T_2 states

 $[I_z = 2 \text{ Pdf}]$: four principal maxima in the intersection betw. the z = 0 plane and the $x = \pm y$ planes, s.t. $d^* = 2.83$ fm.

 \implies $E_B(a)$ minima are, then, predicted to lie at

$$a = \frac{\sqrt{2}}{2} \frac{d^*}{n}$$
 with $n \ge 1$, i.e. $a \approx 2.02, 1.01, 0.67, ...$

In practice: two E_B minima at $a \approx 1.05$ and 2.02 fm are observed

Breaking and restoration of rotational symmetry on the lattice

≻

Discretization on ⁸Be: the $2^+_1 T_2$ states

 $I_z = 1,3$ Pdf: 2 circles of principal maxima about the z axis,

located at a distance $d^* = 2.83$ fm from the origin.

 \implies $E_B(a)$ minima are, then, predicted to lie at

$$a = \frac{\sqrt{2}}{2} \frac{d^*}{n}$$
 with $n \ge 1$, i.e. $a \approx 2.02, 1.01, 0.67, ...$

In practice: two E_B minima at $a \approx 1.05$ and 2.02 fm are observed

3

Breaking and restoration of rotational symmetry on the lattice

Discretization on ⁸Be: the $2^+_1 T_2$ states

 $I_z = 1,3$ Pdf: 2 circles of principal maxima about the z axis,

located at a distance $d^* = 2.83$ fm from the origin.

 \implies $E_B(a)$ minima are, then, predicted to lie at

$$a = \frac{\sqrt{2}}{2} \frac{d^*}{n}$$
 with $n \ge 1$, i.e. $a \approx 2.02, 1.01, 0.67, ...$

In practice: two E_B minima at $a \approx 1.05$ and 2.02 fm are observed

3

Breaking and restoration of rotational symmetry on the lattice

Introduction

Appendix

The low-energy ⁸Be spectrum: the 4_2^+ multiplet

In the f = 2.5 case, fixing $Na \ge 12$ fm residual finite volume effects for the 4_2^+ multiplets amount to $\approx 10^{-3}\hbar^2$. Multiplet-averaging evens the spikes.

Introduction

Appendix

The low-energy ⁸Be spectrum: the 6_1^+ multiplet

In the f = 2.5 case, fixing $Na \ge 12$ fm residual finite volume effects for the 6_1^+ multiplets amount to $\approx 10^{-4} \hbar^2$. Multiplet-averaging evens the spikes.

Remark: for $a \leq 0.80$ fm $|\Delta \mathcal{L}^2| \propto \exp(c_{\kappa} a)$ with $c_{\kappa} > 0$

Breaking and restoration of rotational symmetry on the lattice