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Motivation

We investigate rotational symmetry breaking in the low-energy spectra of�� ��light α-conjugate nuclei: 8Be, 12C, 16O, ...

on a cubic lattice G.S. et al. EPJ A 54, 232 (2018). In particular, we aim at

♣ identifying lattice eigenstates in terms of SO(3) irreps

=⇒ Phys. Lett. B 114, 147-151 (1982), PRL 103, 261001 (2009)

♣ exploring the dependence of physical observables on spacing and size

=⇒ PRD 90, 034507 (2014), PRD 92, 014506 (2015)

♣ developing memory-saving and fast algorithms for the diagonalization
of the lattice Hamiltonian =⇒ Phys. Lett. B 768, 337 (2017)

♣ testing techniques for the suppression of discretization artifacts

=⇒ Lect. Notes in Phys. 788 (2010)

Applications

Nuclear Lattice EFT: ab initio nuclear structure PRL 104, 142501 (2010), PRL 112,

102501 (2014), PRL 117, 132501 (2016) and scattering Nature 528, 111-114 (2015)
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The Hamiltonian of the system

The macroscopic α-cluster model1 of B. Lu et al. PR D 90, 034507 (2014) is adopted
=⇒ nuclei are decomposed into M structureless α-particles

H = − ~2

2mα

M∑

i=1

∇2
i +

M∑

i>j=1

[VC(rij) + VAB(rij)] +
M∑

i>j>k=1

VT(rij, rik, rjk)

with rij = |ri − rj|. The potentials are of the type

Coulomb2

4e2

4πε0

1
rij

erf

(√
3rij

2Rα

)

with Rα = 1.44 fm

rms radius of the 4He
NB: Erf adsorbs the

singularity at r = 0

Ali-Bodmer2

Va f e−η
2
a r2

ij + Vre
−η2

r r2
ij

with η−1
r = 1.89036 fm,

Vr = 353.508 MeV
and η−1

a = 2.29358 fm,
Va = −216.346MeV,

auxiliary param. f = 1

Gaussian

V0e−λ(r2
ij+r2

ik+r2
jk)

with λ = 0.00506 fm−2,
V0 = −4.41 MeV for 12C 3

s.t. Eg.s. = −∆EHoyle

and V0 = −11.91 MeV for 16O 4

s.t. Eg.s. = −∆E4α

1G.S. et al. JP G 43, 8 (2016), 2NP 80, 99-112 (1966) , 3Z. Physik A 290, 93-105 (1979) , 4 G.S. (2017)
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The lattice environment

The configuration space in relative d.o.f. of an M − body physical system into
a cubic lattice reduces to

R3M−3 −→ N3M−3

where: N =⇒ number of points per dimension (≡ lattice size)
a =⇒ lattice spacing and L ≡ Na

Consequences: discretization effects

1. the action of differential operators is
represented via finite differences:
=⇒ Lect. Notes in Phys. 788 (2010)

2. breaking of Galiean invariance

3. breaking of continuous translational
invariance (free-particle case) −3 −2 −1 0 1 2 3

0

1

2
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4

5

px

2m
α
T
(p

x)
/~

2

continuum
N=1
N=2
N=3
N=4
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The lattice environment
The configuration space in relative d.o.f. of an M − body physical system into
a cubic lattice reduces to

R3M−3 −→ N3M−3

where: N =⇒ number of points per dimension (≡ lattice size)
a =⇒ lattice spacing

and finite-volume effects
on physical observables

With periodic boundary conditions:
1. configuration space becomes

isomorphic to a torus in
3M− 3-dimensions

2. lattice momenta become p = ~ 2πn
Na

where n is a vector of integers
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Symmetries
On the lattice SO(3) symmetry reduces to the invariance under the cubic groupO.

Accordingly

«Only eight [five: A1, A2, E, T1, T2] different possibilities exist for rotational
classification of states on a cubic lattice. So, the question arises: how

do these correspond to the angular momentum states in the
continuum? [...] To be sure of higher spin assigments and mass
predictions it seems necessary to follow all the relevant irreps

simultaneously to the continuum limit. »

R.C. Johnson, Phys. Lett. B 114, 147-151, (1982).

Integer spin irreps D` of SO(3) decompose into irreps of O as follows:

D0 = A1

D1 = T1

D2 = E⊕ T2

D3 = A2 ⊕ T1 ⊕ T2

D4 = A1 ⊕ E⊕ T1 ⊕ T2

D5 = E⊕ T1 ⊕ T1 ⊕ T2

D6 = A1 ⊕ A2 ⊕ E⊕ T1 ⊕ T2 ⊕ T2
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Symmetries

Degenerate states belonging to the same O irrep can be labeled with the irreps
Iz of the cyclic group C4, generated by an order-three element of O (e.g. Rπ/2

z ):

SO(3) ⊃ SO(2)
↓ ↓
l m, =⇒

O ⊃ C4

↓ ↓
Γ Iz,

Conversely, the discrete symmetries of the Hamiltonian are preserved:

time reversal, parity, exchange symmetry

Applications

Within an iterative approach for the diagonalization ofH, the states belonging
to an irrep Γ of a point group G can be extracted applying the projector

PΓ =
∑

g∈G
χΓ(g)D(g)

where D(g) is a representation of dimension 3M− 3 for the operation g ∈ G
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Finite volume energy corrections
LO finite volume energy corrections for relative two-body bosonic states with
reduced mass µ, angular momentum ` and belonging to the Γ irrep of O are
given by PRL 107, 112011 (2011)

∆E(`,Γ)
B ≡ E(`,Γ)

B (∞)− E(`,Γ)
B (L) = β

(
1
κ0L

)
|γ|2 e−κ0L

µL
+O

(
e−
√

2κ0N
)

with γ⇒ asymptotic normalization constant
κ0 ⇒ binding momentum and β(x)⇒ a polynomial

` Γ β(x)

0 A+
1 −3

1 T−1 +3

2
T+

2 30x + 135x2 + 315x3 + 315x4

E+ − 1
2 (15 + 90x + 405x2 + 945x3 + 945x4)

3
A−2 315x2 + 2835x3 + 122285x4 + 28350x5 + 28350x6

T−2 − 1
2 (105x + 945x2 + 5355x3 + 19530x4 + 42525x5 + 42525x6)

T−1 − 1
2 (14 + 105x + 735x2 + 3465x3 + 11340x4 + 23625x5 + 23625x6)

Although no analythic LO FVEC formula for the three-body case exists, results for zero-
range potentials PRL 114, 091602 (2015) and the asymptotic (≡ large N) behaviour are
available Phys. Lett. B 779, 9-15 (2018).
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Finite volume energy corrections

LO finite volume energy corrections for relative two-body bosonic states with
reduced mass µ, angular momentum ` and belonging to the Γ irrep of O are
given by PRL 107, 112011 (2011)

∆E(`,Γ)
B ≡ E(`,Γ)

B (∞)− E(`,Γ)
B (L) = β

(
1
κ0L

)
|γ|2 e−κ0L

µL
+O

(
e−
√

2κ0N
)

with γ⇒ asymptotic normalization constant
κ0 ⇒ binding momentum and β(x)⇒ a polynomial

Multiplet averaging of the energies. ⇒ the finite volume energy corrections
assume an universal form, independent in magnitude on the SO(3) irreps

E∞(`P
A)− EL(`P

A)
∣∣∣

LO
= (−1)`+13|γ|2 e−κ0L

µL with E(`P
A) ≡

∑
Γ∈O

χΓ(1)
2`+1 E(`P,Γ)

B (L)

at LO, i.e. order exp(−κ0L).

where: Γ⇒ irrep of the cubic group
χΓ(1)⇒ character of Γ w.r.t. the identity conjugacy class (≡ dimΓ)

P⇒ eigenvalue of the inversion operator P
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Finite volume energy corrections including Coulomb interaction
Leading Coulomb corrections for the energies of states with ` = 0 (A1) de-
scribing two spinless singly-charged particles in a finite volume are given by

∆E(0,A1)
B,QED ≡ E(0,A1)

B,QED(∞)− E(0,A1)
B,QED(L) = α

πLI +O(α2)
=⇒ PRD 90, 074511 (2014)

I =
∑Λn

n 6=0
1
|n|2
− 4πΛn = −8.9136

where: α = e2/4π⇒ fine structure constant
Λn = NΛ/2π with Λ⇒ UV lattice momentum cutoff

n⇒ three-vector of integers�� ��As in the case without QED, FV corrections for the ` = 0 state are negative

In presence of Coulomb interaction, the infinite-volume bound state energy
E ≡ −E(0,A1)

B (∞) = −κ2
0/2µ and binding momentum κ0 is modified into

E(0,A1)
B,QED(∞) =

κ2
0

2µ
− 2ακ0

1− κ0r0

[
γE + log

(
αµ

2κ0

)]

where: r0 ⇒ effective range of strong interactions
γE ≈ 0.57721⇒ Euler-Mascheroni constant

Remark: in absence of further forces there’s no QED contribution at O(α)
Outlook: extension of the Coulomb FVEC formula to states with ` ≥ 1
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The low-energy 8Be spectrum
Increasing the parameter Va of VAB up to 130% of its eigenvalue (f = 1.3), the finite
volume behaviour of the energies of the 0+

1 and 2+
1 bound states can be inspected:
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♣ Remark: for N & 27 the sign of the FVECs agrees with the ∆E(`,Γ)
B formulas for ` = 0

and 2, even if Coulomb corrections dominate outside the strong interaction region
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The low-energy 8Be spectrum

The further increase of the parameter Va of VAB up to 250% (f = 2.5) permits to extend
the FV analysis to the ` = 4 and 6 states =⇒ the 4+

2 and 6+
1 multiplets (cf. magnification)
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The low-energy 12C spectrum
Since the nucleus is naturally bound, no artificial increase of the strength parameter V0

of VAB is necessary for the study of the lowest 0+
1 , 2+

1 and 3−1 states.
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♣ Remark: the spacing is larger (a = 0.5 fm) =⇒ discretization effects: 10−2-10−3 MeV.
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The low-energy 8Be spectrum: the 0+
1 and 2+

1 multiplets
Now we consider the average values of the squared total angular momentum operator
L2, in relative coordinates. Fixing a = 0.5 fm, for the 0+

1 and 2+
1 states (f = 1.3) we find:
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as for the energies,
multiplet averaging
suppresses FV effects

discretization
effects ≈ 10−5~2

discretization
effects ≈ 10−4~2

♣ Remark: The average values of L2 for the 0+
A1

, 2+
E and 2+

T2
states smoothly converge

to the eigenvalues equal to 0 and 6~2, modulo residual discretization errors.
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The low-energy 8Be spectrum: the 4+
2 multiplet

In the f = 2.5 case, by fixing a = 0.25 fm discretization effects for the 4+
2

multiplets reduce to ≈ 10−4~2. Multiplet-averaging enhances convergence.
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Remark: for L & 25 |∆L2| ∝ exp(mκL) with mκ < 0
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The low-energy 8Be spectrum: the 6+
1 multiplet

In the f = 2.5 case, fixing a = 0.25 fm residual discretization effects for the 6+
1

multiplets amount to ≈ 10−4~2. Multiplet-averaging enhances convergence.
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Remark: for L & 25 |∆L2| ∝ exp(mκL) with mκ < 0
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The low-energy 12C spectrum
As a consequence of the isotropy of the potentials, the nucleus has an equilat-
eral triangular equilibrium configuration, i.e. 〈r12〉 = 〈r23〉 = 〈r13〉 ≡ R.

Restoring the Va parameter of the Ali-Bodmer potential to its default value
(f = 1.0) and fixing the spacing to a = 0.50 fm, we compute the average

values of L2 on the 0+
1 , 2+

1 and 3−1 multiplets of states.
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Remark: residual discretization errors are sensibly larger (≈ 10−1 − 10−2~2).
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Discretization effects: a cover story...
Breaking and restorationof rotational symmetry in the
lowenergy spectrumof lightα-conjugate nuclei on the

lattice I: 8Beand 12C
Gianluca Stellin1,2, Serdar Elhatisari1,2,3 and Ulf-G.Meißner1,2,4,5

Eur. Phys. J. A 54, 232 (2018)
1 Helmholtz Institut für Strahlen- und Kernphysik, Universität Bonn, Nußallee 14-16, 53115 Bonn, Germany

2 Bethe Center for Theoretical Physics, Universität Bonn, Nußallee 12, 53115 Bonn, Germany
3 Department of Engineering, Karamanoğlu Mehmetbey University, 70200 Karaman, Turkey

4 Institute for Advanced Simulation, Insitut für Kernphysik and Jülich Center for Hadron Physics, Forchungszentrum Jülich,
52425 Jülich, Germany

5 Ivane Javakhishvili Tbilisi State University, 0186 Tbilisi, Georgia

Abstract
The breaking of rotational symmetry on the lattice for bound eigenstates of the two lightest alpha conjugate nuclei is explored. Moreover, a macroscopic alpha-cluster model is used for investigating the general problems associated with the transposition
of a physical many-body problem on a cubic lattice. In view of the descent from the 3D rotation group to the cubic group symmetry, the role of the squared total angular momentum operator in the classification of the lattice eigenstates in terms of SO(3)
irreps is discussed. In particular, the behaviour of the average values of the latter operator, the Hamiltonian and the inter-particle distance as a function of lattice spacing and size is studied by considering the 0+, 2+, 4+ and 6+ (artificial) bound states of
8Be and the lowest 0+, 2+ and 3− multiplets of 12C.

Objectives

I The 8Be nucleus as assembly of α particles.

The wealth of available literature on lattice calculations is, perhaps, self-explanatory on the role that the latter play in the investigation of relativistic field theories and quantum few-body and many-body
systems. The purpose of the present work is to investigate rotational symmetry breaking in the low-energy spectra of light α-conjugate nuclei on a cubic lattice, i.e. in particular to

. test the capability of the squared total angular momentum operator L2 in describing the lattice eigenstates in terms of SO(3) irreps [1, 2, 3];

. explore the behaviour of the average values physical observables such as energy, angular momentum, interparticle distance on the eigenstates of the lattice Hamiltonian as a function of lattice
spacing and size [4] [5];

. develop memory-saving and fast codes for the diagonalization of the lattice Hamiltonian [6];

. test the techniques for suppressing of discretization artifacts, namely the improvement schemes for differential operators on the lattice [7].
I Implications of the analysis that follows regard few-body systems on the lattice, such as light nuclei in the framework of ab-initio nuclear EFT [8, 9] or hadrons in LQCD [10]. I The 12C nucleus as assembly of α particles.

The Model
The phenomenological picture introduced in Ref. [4] is adopted. Individual nucleons are, thus, grouped into 4He clusters, that are treated as spinless spherically-charged particles of mass m ≡ m4He subject to both two-body
V II and three-body potentials V III. Even if such models can explain only a part of the spectra of 4N self-conjugate nuclei, α-cluster models have strong foundations [11, 12] and influence even in the recent literature [13, 14]
and succeeded in describing certain ground-state properties of this class of nuclei [12] as well as the occurrence of decay thresholds into lighter α-conjugate nuclei [15]. The Hamiltonian of the system reads

H = − ~2

2mα

M∑

i=1

∇2
i +

M∑

i>j=1

[VC(rij) + VAB(rij)] +
M∑

i>j>k=1

VT(rij , rik, rjk)

with rij = |ri − rj |. The potentials are of the type
Erf-Coulomb [16]

4e2

4πε0

1

rij
erf

(√
3rij

2Rα

)

with Rα = 1.44 fm rms radius of the 4He
I VC ’adsorbs’ the singularity at r = 0

Ali-Bodmer [16]

Vae
−η2ar2ij + Vre

−η2rr2ij

with η−1
r = 1.89036 fm, Vr = −353.508 MeV

and η−1
a = 2.29358 fm, Va = −216.346 f MeV where f = 1, 1.3, 2.5

Gaussian [17, 18]

V3e
−λ(r2ij+r2ik+r2jk)

with λ = 0.00506 fm−2, V3 = −4.41 MeV for 12C
s.t. Eg.s. = −∆EHoyle and V3 = −11.91 MeV for 16O

s.t. Eg.s. = −∆E4α

where ηa agrees with the ones fitting the α − α scattering lengths with ` = 0, 2 and 4 to their experimental values [16], whereas the compatibility of Va with the best fits of the latter (cf. d′0, d2 and d4 in ref. [16]) is
poorer. As the repulsive part of VAB is strongly angular momentum dependent, its parameters reproduce within 10% likelihood only the ones for D-wave scattering lengths, d2 [16]. The amplitude parameters of the isotropic
Ali-Bodmer potential, in fact, have been adjusted in such a way that the g.s. energy of the 12C nucleus coincides with the opposite of the Hoyle state gap, i.e. −7.65 MeV.

IBehaviour of the two-body potentials for a system of two particles in
presence of Coulomb and Ali-Bodmer interactions with V0 equal to 100%
(solid line), 130% (dashed line) and 250% (dotted line) of its value presented
below the equation for VAB .

8Be
The relative Hamiltonian for an α− α system possesses just one (shallow)
bound state at−1.107 MeV, despite the observational value of the ground
state (g.s.) energy ≈ 0.092 MeV. In order to study the symmetry breaking
effects due to the cubic lattice environment in the 0+1 g.s. at -10.81 MeV
and in the 2+1 at -3.29 MeV [4], we increase by 30% the parameter Va of
VAB (f = 1.3).
. When Na ≥ 18 fm fi-
nite volume effects are re-
duced to . 10−3 MeV
and the effects of discret-
ization the energy eigen-
values, Er , for different
values of a can be inspec-
ted. It is possible to as-
sociate some extrema of
the latter, cf. the panel
on the left, to the max-
ima of the squared mod-
ulus of the associated ei-
genstates, |Ψr(r)|2.

Er(a) reaches a local minimum for all the values of the spacing a
such that all the maxima of |Ψr(r)|2 are included in the lattice, i.e.
when all the maxima lie along the symmetry axes of the lattice.

In particular, when all the maxima lie along the lattice axes at distance d∗
from the origin and the decay of the probability density function (PDF) as-
sociated to Ψr(r) with radial distance is fast enough, i.e. |Ψr(r)|2Max �
|Ψr(r)|2 for |r| = nd∗ and n ≥ 2, the average value of the interparticle
distance coincides approximately with the most probable α-α separation,
R ≈ d∗, and the average value of the potential, V , is minimized at the same
time.

. As an example, we consider the 2+1 E state with Iz = 0.
Since the maxima of the PDF lie on the lattice axes at distance
d∗ ≈ 2.83 fm and no secondary maximum is found, the energy
eigenvalues of the two states are expected to be minimized for
a = d∗/n with n ∈ N, i.e. for a ≈ 2.83,1.42, 0.94, . . . fm
=⇒ two energy minima at a ≈ 2.85 and 1.36 fm are detec-
ted. In addition, for a ≈ d∗ it is found that R ≈ 2.88 fm and
V ≈ −21.21 MeV, both in appreciable agreement with the min-
ima of the two respective quantities, 2.70 fm and−21.40 MeV, cf.
the two panels on the right.

I Average value of the
squared angular mo-
mentum for the 0+1
and 2+1 states as a
function of the lattice
spacing. Note that for
a ≈ 1.8 fm L2 for the
E and T2 multiplets is
still degenerate within
10−1~2, whereas the
energies of the two are
already separated by≈
2 MeV.

With the aim of extending the analysis to higher angular momentum states,
we increase the Va parameter of VAB up to the 150 % of its original value
(f = 2.5) =⇒ the wavefunctions become more localized about the origin:
Na ≥ 12 fm is enough for the study of discretization effects in the 4+2
and 6+1 states at -15.80 and -11.22 MeV respectively.

I Energies of the 4+2 eigenstates
as a function of lattice spacing.

I Energies of the 6+1 eigenstates
as a function of lattice spacing.

The presence of secondary maxima and of absolute maxima off the lattice
symmetry axes in the 4+2 and 6+1 PDFs make the above interpretation of
the minima of E(a) less effective than in the previous case.

. Nevertheless, the inclusion conditions for the maxima of the
6+1 A2 Iz = 2 state are satisfied in good approximation for a relat-
ively large value of the spacing. The PDF for this 6+ state is char-
acterized by four equidistant couples of principal maxima separ-
ated by an angle γ ≈ 34.2◦ and located at a distance d∗ ≈ 2.31 fm
from the origin in the x, y and z = 0 planes.

From the inclusion conditions of a pair ofmaxima in the first quad-
rant of the xy plane, cf. the two left panels, it follows that

ax =
d∗

n
cos
(π

4
− γ

2

)
,

i.e. ax ≈ 2.04,1.02, 0.68... for the x-axis and

ay =
d∗

n
sin
(π

4
− γ

2

)
,

i.e. ay ≈ 1.08, 0.54, 0.36... for the y-axis =⇒ a sharp minimum
of the total energy (cf. rightmost panel) is detected! Conversely,
the minimum of the average value of the potential and the one of
theR are shifted towards smaller spacings (≈ 0.85 fm) =⇒ slow
decrease of the associated PDF in the vicinity the maxima.

I Average value of the squared angular momentum for the 4+2 (left panel)
and 6+1 eigenstates (right panel) as a function of the lattice spacing. The
behaviour of |L2| for a . 0.75 fm resembles a positive exponential func-
tion of the lattice spacing, whose decay constant is ≈ independent on the
cubic group irrep according to which each multiplet transforms.
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12C
Due to the particular choice of the parameters of VAB , the addition of
VT permits the lowest 0+1 eigenvalue of the 3α Hamiltonian to reproduce
the binding energy of 12C. Since the actual nucleus is bound, no artificial
increase of the Va parameter is needed for the investigation of finite-
volume and discretization effects in the lowest bound states. In particular,
we choose to restrict our analysis to the 0+1 ground state at −7.65 MeV
and the 2+1 and 3−1 multiplets at −3.31 MeV and −1.80 MeV respectively.

In all the eigenstates, the average separation between any pair
of α particles coincide

=⇒ equilateral triangular equilibrium configuration.

As before, we focus on discretization errors. By fixing the size of the lattice
atNa ≥ 19 fm, we inspect the behaviour of the energy eigenvalues of the
0+1 , 2+1 and 3−1 multiplets.

I Energies of the 0+1 and 2+1 ei-
genstates as a function of the
lattice spacing.

I Average α − α distance of the
0+1 and 2+1 eigenstates as a func-
tion of the lattice spacing.

Some of the minima of the energy curves can be associated to the values
of a that permit the inclusion of relative maxima of the PDFs of the states
into the lattice. Differently to the previous case, the 12C eigenfunctions
may possess a huge amount of local extrema, thus making the analysis of
the PDF maxima more involved than in the 8Be.

J PDF of the 0+1 A1

state in the configura-
tion space slices with
r23 = (0, 0, 0) (left)
and (4, 3, 0) (right).

. The PDF of the ground state has a local non-zero minimum
when r13 = r23 = (0, 0, 0) and absolute maxima correspond-
ing to equilateral triangular configurations in which α-particles
are separated by d∗ ≈ 3.3 fm. Even if none of these maxima
can be exactly included in the lattice, both the three minima of
the energy eigenvalue at a ≈ 1.40, 2.35 and 3.10 fm are in good
correspondence with the ones of the potential energy V .

J PDF of the 2+1 E
state in the configura-
tion space slices with
r23 = (0, 0, 0) (left)
and (5, 1, 0) (right).

. Concerning the 2+E multiplet, its energy eigenvalue reaches a
shallow minimum for a ≈ 2.30 fm and two minima for a ≈ 1.45
and 3.10 fm. These extrema are found to be in correspondence
with the ones of the average values of the potential energy. Al-
though no absolute maximum of the associated PDFs lies on the
lattice axes, the average value of the interparticle distance at
a ≈ 3.1 fm agrees with the most probable α − α separation dis-
tance d∗ ≈ 3.3 fm.

I Energies of the 3−1 eigenstates
as a function of the lattice spacing.

I Average α − α distance of the
3−1 eigenstates as a function of the
lattice spacing.

J PDF of the 3−1 T1
state in the configura-
tion space slices with
r23 = (0, 0, 0) (left)
and (1, 2, 5) (right).

. For the 3−T1
states, the energy minima at a ≈ 1.45, 2.40 and

3.15 fm are still in good correspondence with the ones of V , even
if not all the principal maxima of the PDFs can be exactly included
in the cubic lattice. The twominima of Er at 2.40 and 3.15 fm cor-
respond to values of the average interparticle distanceR of about
3.45 fm, in agreement with d∗.

Contrary to the case of the 0+1 and 2+1 states of 8Be, the computation of
the average values of L2 does not provide more precise information on
the transformation properties of the states under SO(3), since the ener-
gies become degenerate with greater accuracy at larger lattice spacings.

I Average vaules of the squared
total angular momentum of the 0+1
and 2+1 eigenstates as a function
of the lattice spacing.

I Squared total angular mo-
mentum of the 3−1 eigenstates as
a function of the lattice spacing.

By subtracting the expected squared angularmomentum eigenvalues from
its average values and then taking the absolute value, |∆L2|, the beha-
viour of the asymptotic corrections to L2 for small lattice spacings can
be inspected. In this case, an appreciable quasi-linear behaviour of the
log |∆L2|’s can be inferred from 1.4 fm towards the continuum limit =⇒ If
a is small enough, i.e. a . 1.4 fm for the 0+1 and 2+1 states or a . 1.3 fm for
the 3− multiplet, log |∆L2| behave almost linearly with the lattice spacing,
with a positive slope.

Thus, the corrections to the L2 av-
erage values for lattice cubic group
eigenstates can be reproduced by a
positive exponential of a,

|∆L2(`)| ≈
a→0

A` exp(a · κ`) .

in the small-spacing region, where:
. κ` is ≈ independent on the

cubic group irrep Γ according
to which each state of a given
angular momentum multiplet
` transforms;

. A` → 0 for infinite-volume
lattices and is expected to
decrease with increasing box
size Na fm.

I Average value of |∆L2| for the
2+1 (left) and the 3−1 states (right)
as a function of the lattice spacing.
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Discretization effects on energy

Unlike finite-volume effects, the dominant behaviour of dicretization
corrections on energy, ∆EB(a), is unknown.
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Nevertheless: some extrema of EB(a) can be associated to the maxima of the
probability density function corresponding to the given energy eigenstate.

NB: If the primary maxima of the pdf lie at distance d∗ w.r.t. the origin, the most
probable α− α separationR∗ is given by d∗
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Discretization effects on energy

If the all pdf maxima are absolute and lie along the coordinate axes, ∃ a value
of a s.t. all the maxima of the pdf are included in the cubic lattice.

In particular: for a = d∗ =⇒ EB(a) is minimized and
if |ΨMax

B |2 � |ΨB(r)|2 where |r| = nd∗ and n ≥ 2 =⇒ 〈R〉 ≈ d∗ and 〈V〉 is
approximately minimized

3 conditions fulfilled 7 secondary maxima 7 maxima off the axes

15 / 24 Breaking and restoration of rotational symmetry on the lattice



Introduction The Framework Finite Volume Effects Discretization Effects Conclusion Appendix

Discretization on 8Be: the 2+
1 E states�� ��Iz = 0 Pdf : two principal maxima along the z axis,

located at a distance d∗ = 2.83 fm from the origin.

=⇒ EB(a) minima are, then, predicted to lie at

a =
d∗

n
with n ≥ 1, i.e. a ≈ 2.83, 1.42, 0.94, ...

In practice: two EB minima at a ≈ 1.36 and 2.85 fm are observed
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Discretization on 8Be: the 2+
1 E states�� ��Iz = 0 Pdf : two principal maxima along the z axis,

located at a distance d∗ = 2.83 fm from the origin.

=⇒ EB(a) minima are, then, predicted to lie at

a =
d∗

n
with n ≥ 1, i.e. a ≈ 2.83, 1.42, 0.94, ...

In practice: two EB minima at a ≈ 1.36 and 2.85 fm are observed
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In addition:
V ≈ −21.21 MeV @ a = d∗
Vmin ≈ −21.40 MeV @ a ≈ 2.70 fm

and
R ≈ 2.88 fm @ a = d∗

Rmin ≈ 2.70 fm @ a ≈ 2.50 fm
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Discretization on 8Be: the 2+
1 E states�� ��Iz = 2 Pdf : 4 principal maxima on the x and y axes,

located at a distance d∗ = 2.83 fm from the origin.

=⇒ EB(a) minima are, then, predicted to lie at

a =
d∗

n
with n ≥ 1, i.e. a ≈ 2.83, 1.42, 0.94, ...

In practice: two EB minima at a ≈ 1.36 and 2.85 fm are observed
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Still:
V ≈ −21.21 MeV @ a = d∗
Vmin ≈ −21.40 MeV @ a ≈ 2.70 fm
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V ≈ −21.21 MeV @ a = d∗
Vmin ≈ −21.40 MeV @ a ≈ 2.70 fm

16 / 24 Breaking and restoration of rotational symmetry on the lattice



Introduction The Framework Finite Volume Effects Discretization Effects Conclusion Appendix

Discretization on 8Be: the 6+
1 A2 state�� ��Iz = 2 Pdf : four equidistant couples of principal

maxima separated by an angle γ ≈ 34.2° and located
at a distance d∗ ≈ 2.31 fm from the origin in the x, y
and z = 0 planes.

ww��� ��The 24 maxima cannot be included on the lattice
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Discretization on 8Be: the 6+
1 A2 state

Considering the inclusion conditions of a couple of
maxima in the 1st quadrant of the xy plane (n ≥ 1):

ax =
d∗

n
cos
(π

4
− γ

2

)
, i.e. ay ≈ 2.04, 1.02, 0.68...

ay =
d∗

n
sin
(π

4
− γ

2

)
, i.e. ay ≈ 1.08, 0.54, 0.36...

In practice: an EB minimum at a ≈ 1.03 fm is observed !
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Discretization on 8Be: the 6+
1 A2 state

Considering the inclusion conditions of a couple of
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4
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)
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In practice: an EB minimum at a ≈ 1.03 fm is observed !
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V ≈ 0.0 MeV @ a = d∗ (unbound)
Vmin ≈ −125.85 MeV @ a ≈ 0.85 fm

and
R� Rmin @ a = d∗

Rmin ≈ 2.13 fm @ a ≈ 0.85 fm
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Other low-energy 8Be wavefunctions
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Conclusions & Outlook

The macroscopic α-cluster model in PRD 90, 034507 (2014) has been applied to the
8Be and 12C on the lattice. A fully-parallel method based on the Lanczos iter-
ation has been adopted for the diagonalization of the Hamiltonian, allowing
for

1. the exploration of SO(3) breaking effects on a sample of bound eigen-
states: 0+, 2+, 4+ and 6+ for the 8Be and 0+, 2+ and 3− for the 12C;

2. a test for the capability of the squared total angular momentum operator
of identifying the lattice eigenstates in terms of the label of SO(3) irreps;

3. an empirical derivation of the asymptotic behaviour of the corrections for
the average values of L2 due to finite volume and discretization effects.
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Conclusions & Outlook
The macroscopic α-cluster model in PRD 90, 034507 (2014) has been applied to the
8Be and 12C on the lattice. A fully-parallel method based on the Lanczos iter-
ation has been adopted for the diagonalization of the Hamiltonian, allowing
for

1. the exploration of SO(3) breaking effects on a sample of bound eigen-
states: 0+, 2+, 4+ and 6+ for the 8Be and 0+, 2+ and 3− for the 12C;

2. a test for the capability of the squared total angular momentum operator
of identifying the lattice eigenstates in terms of the label of SO(3) irreps;

3. an empirical derivation of the asymptotic behaviour of the corrections for
the average values of L2 due to finite volume and discretization effects.�� ��Perspectives and hints

♠ Extension of the analysis to the 16O ⇒ usage of the existing exact GPU
codes for small volumes (memory issues!) and benchmarks as well as
Metropolis - Monte Carlo wordline or auxiliary field algorithms for large
volumes (under development);

♠ Derivation of an analytical formula for the leading order FV energy cor-
rections for bound states with ` ≥ 1 in presence of a Coulomb-type po-
tential.
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Thanks for your attention!
Grazie per l’attenzione!

20 / 24 Breaking and restoration of rotational symmetry on the lattice



Introduction The Framework Finite Volume Effects Discretization Effects Conclusion Appendix

Rotational Symmetry
On the lattice 3-dim rotational symmetry reduces to a subgroup of SO(3), the
cubic group O . A process of descent in symmetry takes place: α = x; y; z

continuum, ∞− volume : SO(3) =⇒ [H, L2] = 0, [H, Lα] = 0

⇓
continuum, finite volume : O ⊂ SO(3) =⇒ [H, L2] = 0, [H, Lα] 6= 0

⇓
discrete, finite volume : O ⊂ SO(3) =⇒ [H,L2] 6= 0, [H,Lα] 6= 0

Accordingly

«Only eight [five: A1, A2, E, T1, T2] different possibilities exist for rotational
classification of states on a cubic lattice. So, the question arises: how

do these correspond to the angular momentum states in the
continuum? [...] To be sure of higher spin assigments and mass
predictions it seems necessary to follow all the relevant irreps

simultaneously to the continuum limit. »

R.C. Johnson, Phys. Lett. B 114, 147-151, (1982).
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Discretization on 8Be: the 2+
1 T2 states

�� ��Iz = 2 Pdf : four principal maxima in the intersection
betw. the z = 0 plane and the x = ±y planes, s.t. d∗ =
2.83 fm.
=⇒ EB(a) minima are, then, predicted to lie at

a =

√
2

2
d∗

n
with n ≥ 1, i.e. a ≈ 2.02, 1.01, 0.67, ...

In practice: two EB minima at a ≈ 1.05 and 2.02 fm are observed
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Discretization on 8Be: the 2+
1 T2 states�� ��Iz = 2 Pdf : four principal maxima in the intersection

betw. the z = 0 plane and the x = ±y planes, s.t. d∗ =
2.83 fm.
=⇒ EB(a) minima are, then, predicted to lie at

a =

√
2

2
d∗

n
with n ≥ 1, i.e. a ≈ 2.02, 1.01, 0.67, ...

In practice: two EB minima at a ≈ 1.05 and 2.02 fm are observed

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−15

−10

−5

0

5

10

15

a [fm]

[M
eV

]

2+
1 T2 States

T
V
EB

In addition:
V ≈ −5.43 MeV @ a = d∗

Vmin ≈ −18.05 MeV @ a ≈ 1.15 fm

and
R ≈ 4.86 fm @ a = d∗

Rmin ≈ 3.11 fm @ a ≈ 1.78 fm
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Discretization on 8Be: the 2+
1 T2 states�� ��Iz = 1, 3 Pdf : 2 circles of principal maxima about the

z axis,
located at a distance d∗ = 2.83 fm from the origin.
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Still:
V ≈ −5.43 MeV @ a = d∗

Vmin ≈ −18.05 MeV @ a ≈ 1.15 fm
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The low-energy 8Be spectrum: the 4+
2 multiplet

In the f = 2.5 case, fixing Na ≥ 12 fm residual finite volume effects for the 4+
2

multiplets amount to ≈ 10−3~2. Multiplet-averaging evens the spikes.
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Remark: for a . 0.80 fm |∆L2| ∝ exp(cκa) with cκ > 0
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The low-energy 8Be spectrum: the 6+
1 multiplet

In the f = 2.5 case, fixing Na ≥ 12 fm residual finite volume effects for the 6+
1

multiplets amount to ≈ 10−4~2. Multiplet-averaging evens the spikes.
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