

Measurements of Open-charm Hadrons in Heavy-ion Collisions by the STAR experiment

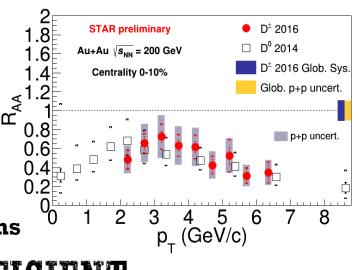
Jan Vanek for the STAR collaboration

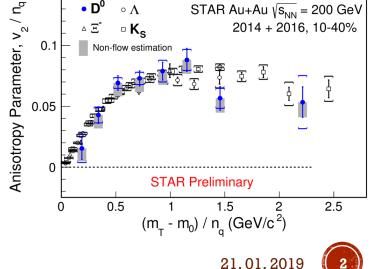
NUCLEAR PHYSICS INSTITUTE, CZECH ACADEMY OF SCIENCES

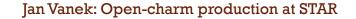
57. International Winter Meeting on Nuclear Physics, Bormio, Italy

21.01.2019

ENERGY LOSS OF CHARM QUARKS IN THE QGP

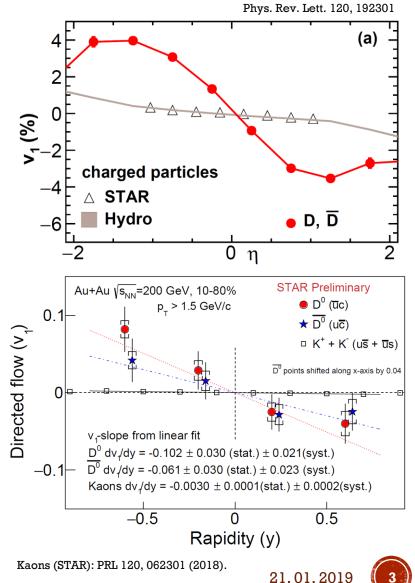

- At RHIC energies, charm quarks are produced predominantly through partonic hard scatterings
- They experience the whole evolution of the system
- Energy loss in the medium can be quantified using s¹
 the nuclear modification factor:


$$R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm D}^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle\,{\rm d}N_{\rm D}^{\rm pp}/{\rm d}p_{\rm T}}$$


D⁰ and D[±] suppressed in central Au+Au collisions

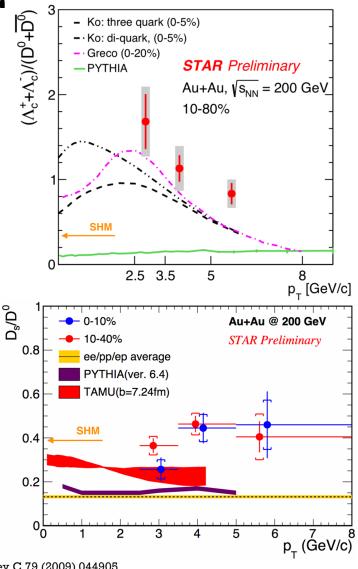
CHARM QUARK DIFFUSION COEFFICIENT

- More information about charm quark interaction with the QGP can be accessed by measurement of elliptic flow (v_2) of open-charm mesons
 - Interactions of charm quark with the QGP (transport coefficient)
 - Level of thermalization of charm quarks in the QGP
- Suggests strong interactions of the charm quarks with the QGP and that charm quarks acquire similar flow as light flavor quarks



INITIAL TILT OF THE BULK AND INITIAL EM FIELD

- Directed flow (v₁) of open charm mesons probes:
 - The mismatch between the initial longitudinal density profiles of the bulk and heavy flavor quark production
 - Larger v₁ slope with respect to rapidity predicted for open-charm hadrons than for light flavor hadrons
 - EM field induced by the passing spectators
 - Opposite slopes for c and c̄ containing hadrons
- Insufficient precision to conclude about the EM induced splitting
- Approximately 20 times larger v₁ for D⁰ than for kaons.



CHARM QUARK HADRONIZATION

- Measurement of various open-charm hadron species can help with understanding the hadronization process
- Production of Λ_c
 - Baryon/meson ratio for heavy quarks
 - Coalescence vs. fragmentation hadronization
- Production of D_s
 - Strangeness enhancement
 - Coalescence vs. fragmentation hadronization
- Λ_c/D⁰ ratio shows significant enhancement in Au+Au collisions with respect to PYTHIA
- D_s/D⁰ is enhanced in Au+Au collisions possibly due to strangeness enhancement with respect to PYTHIA and elementary collisions, and due to coalescence hadronization

21.01.201

Ko: Phys.Rev.C 79 (2009) 044905 Greco: Eur.Phys.J.C (2018) 78:348 SHM: Phys.Rev.C 79 (2009) 044905 ep/pp/ep avg: EPJ C 76, 397 (2016) TAMU: PRL 110, 112301 (2013)

THANK YOU FOR ATTENTION, MORE ON DETAILS ON MY POSTER

Jan Vanek: Open-charm production at STAR