Latest Results from the ATLAS Experiment

Universität Göttingen on behalf of the ATLAS Collaboration 24 January 2019

Stan La

Stan Lai

Bormio Winter Meeting on Nuclear Physics

24 January 2019

The ATLAS Detector

oton

Proton-Proton and Heavy Ion Collisions at the LHC

Run 1: 7 TeV (2010/2011) 8 TeV (2012) Run 2: 13 TeV (2015-2018)

LHCb

The Run-2 Legacy

The Run-2 Legacy

ATLAS pp data: April 25-October 24 2018

Inner Tracker		Calorii	meters	Muon Spectrometer				Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.8	99.8	100	99.7	100	99.8	99.7	100	100	100	99.6

Good for physics: 97.5% (60.1 fb⁻¹)

Cross-Section Summary

ATLAS Performance: Selection

6

muon reco efficiency Efficiency 0.98 0.96 ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 59.9 \text{ fb}^{-1}$ Medium muons Data 2018 0.94 . 0.1<ml<2.5 - MC Data / MC Stat only Sys Stat. 1.01 0.99 20 40 60 80 100 p_{_} [GeV]

jet energy response

*E*_T^{miss} resolution stability

Huge spectrum of physics results - selection bias necessary

SM Precision Measurements

- Flavour and Jet physics
- Electroweak physics

Properties of Heavy Particles

- top quark physics
- Higgs physics

Searches for BSM Physics

SM Precision Measurements

- Flavour and Jet physics
- Electroweak physics

Properties of Heavy Particles

- top quark physics
- Higgs physics

Searches for BSM Physics

SM Precision Measurements

- Flavour and Jet physics
- Electroweak physics

Properties of Heavy Particles

- top quark physics
- Higgs physics

Searches for BSM Physics

SM Precision Measurements

- Flavour and Jet physics
- Electroweak physics

Properties of Heavy Particles

- top quark physics
- Higgs physics

Searches for BSM Physics

 $B^{0}(s) \rightarrow \mu^{+}\mu^{-}$

Tiny BR predicted: FCNC, suppressed due to CKM, helicity $BR(B_s) \sim 3.7 \times 10^{-9}$ Sensitive to exotic particles in loops (provides strong BSM constraints) $BR(B_d) \sim 1.1 \times 10^{-10}$

Jet Production (Azimuthal Correlations)

SM Precision Measurements

- Flavour physics
- Electroweak physics

Properties of Heavy Particles

- top quark physics
- Higgs physics

Searches for BSM Physics

4 F_m F^m

W Mass Measurement

Flagship measurement: W boson mass measurement with 7 TeV data

Analysis: template fits to p_T^ℓ and m_T distributions requires detailed calibration studies, understanding of detector

Electroweak WW/WZ Production (VBS)

16

Vector Boson Scattering linked to EWSB

- cross-section unitarity restored by Higgs boson
- key background to Higgs signals
- probes triple gauge boson couplings

Signal significance: 6.9σ (4.6 σ) $\sigma_{fid} = 2.91^{+0.51}_{-0.47}$ (stat.) ± 0.27 (sys.) fb

Other Measurements of Gauge Boson Production

SM Precision Measurements

- Flavour and Jet physics
- Electroweak physics

Properties of Heavy Particles

- top quark physics
- Higgs physics

Searches for BSM Physics

Top Quark Precision Measurements

Associated Top Production Modes

ttγ, tt+heavy flavour:

differential/fiducial cross-sections extracted

ttZ: well established signal ($\gg 5\sigma$)

ttW: signal significance 4.3σ (3.4σ expected)

- Constraints on top quark couplings to gauge sector (extracting weak isospin T₃^{top})
- Constraints on BSM physics coupling to top quark (Intepretation in effective field theory)

Spin Correlations in Top Pair Decays

AS-CONF-2018-02

Top quark spin transmitted directly to decay products

- test angular distribution of charged leptons in di-lepton events
- observable: $\Delta \phi(\ell^+,\ell^-)$ in various m_{tt} ranges
- Distributions unfolded to parton level to compare with prediction

Larger spin correlations seen than predicted by SM (corresponds to 3.2σ) (hint at BSM effects?)

SM Precision Measurements

- Flavour and Jet physics
- Electroweak physics

Properties of Heavy Particles

- top quark physics *Higgs physics*
- **Searches for BSM Physics**
- **Heavy-Ion Physics**

Precision Higgs Physics

Astonishing quick arrival to the precision era in Higgs physics

- 0.2% precision on Higgs mass
- numerous couplings measured / confirmed (especially to *fermion sector*)
- differential cross-sections, measurements of quantum numbers

Higgs-Top Coupling (ttH)

PLB 784 (2018) 173

160

 $m_{\gamma\gamma}$ [GeV]

Higgs-Top Coupling (ttH)

Signal significances (σ):

8) 1/3	ATLAS	7,8 TeV	13 TeV	Comb.
4 (201	Observed	2.7	5.8	6.3
CLB 78	Expected	1.6	4.9	5.1

Extensive use of event categorization, multi-variate discriminants

Production mode firmly established despite low cross-section

Combined H->bb and VH Results

Combined results for $H \rightarrow bb$: include analyses targeting VBF, ttH

Combined results for VH: include analyses targeting $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$

The H→bb decay and VH production mode are now firmly established Yukawa couplings of Higgs boson to fermion sector verified

Search for Higgs Pair Production

SM Precision Measurements

- Flavour physics
- Electroweak physics

Properties of Heavy Particles

- top quark physics
- Higgs physics

Searches for BSM Physics

Not predicted by the SM: Italians drinking cappuccino after dinner

SM Precision Measurements

- Flavour physics
- Electroweak physics

Properties of Heavy Particles

- top quark physics
- Higgs physics

Searches for BSM Physics

Heavy-Ion Physics

So far: 3 events observed in Bormio, Background ~ 0 Significance passes 5σ

ATLAS Search Summary

	ATLAS Exotic Status: July 2018	s Searches* - 95	5% CL	Upper Exclusion Limits	ATL	AS Preliminary
	Model	ℓ , γ Jets† E^{n}_{T}	n ^{iss} ∫£dt[f	b ⁻¹] Limit	$\int \mathcal{L} dt = (3.2 - 79.8) \text{ID}^{-1}$	$\sqrt{s} = 6$, 13 lev Reference
many types of different	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/Z$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	es 36.1 - 36.7 - 37.0 - 3.2 - 3.6 - 36.7 36.1 es 36.1 es 36.1	MD MD Ms Main Mth Main GKK mass 4.1 TeV GKK mass 2.3 TeV BKK mass 3.8 TeV KK mass 1.8 TeV	7.7 TeV $n = 2$ 8.6 TeV $n = 3$ HLZ NLO 8.9 TeV $n = 6$, $M_D = 3$ TeV, rot BH 9.55 TeV $n = 6$, $M_D = 3$ TeV, rot BH $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ $\Gamma/m = 15\%$ Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$	1711.03301 1707.04147 1703.09217 1606.02265 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823 1803.09678
considered	Suppose the set of th	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 36.1 - 36.1 - 36.1 es 36.1 es 79.8 es 36.1 - 79.8 36.1 36.1	Z' mass 4.5 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 5.6 W' mass 3.7 TeV V' mass 4.15 TeV V' mass 2.93 TeV W' mass 3.25 TeV	TeV $\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
	O CI qqqq O CI llqq CI tttt Axial-vector mediator (Dir Colored scalar mediator (Dir	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 37.0 - 36.1 es 36.1 es 36.1 es 36.1	Λ Λ Λ 2.57 TeV m _{med} 1.55 TeV m _{med} 1.67 TeV	$\begin{array}{c c} \hline & 21.8 \text{ TeV} & \eta_{LL} \\ \hline & 40.0 \text{ TeV} & \eta_{LL} \\ \hline & & & \\ C_{4t} = 4\pi \\ g_q = 0.25, \ g_{\chi} = 1.0, \ m(\chi) = 1 \text{ GeV} \\ g = 1.0, \ m(\chi) = 1 \text{ GeV} \end{array}$	1703.09217 1707.02424 CERN-EP-2018-174 1711.03301 1711.03301
will present	$\begin{array}{c} VV_{\chi\chi} \text{ EFT (Dirac DM)} \\ \hline \\ \textbf{S} \\ \textbf{Scalar LQ 1^{st} gen} \\ \textbf{Scalar LQ 2^{nd} gen} \\ \textbf{Scalar LQ 3^{rd} gen} \\ \hline \end{array}$	$\begin{array}{c cccc} 0 \ e, \mu & 1 \ J, \leq 1 \ j & \gamma_{0} \\ \hline 2 \ e & \geq 2 \ j & - \\ 2 \ \mu & \geq 2 \ j & - \\ 1 \ e, \mu & \geq 1 \ b, \geq 3 \ j & \gamma_{0} \end{array}$	es 3.2 - 3.2 - 3.2 es 20.3	M. 700 GeV LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$m(\chi) < 150 \text{ GeV}$ $\beta = 1$ $\beta = 1$ $\beta = 0$	1608.02372 1605.06035 1605.06035 1508.04735
two of the most recent	$\begin{array}{c} \text{NLQ } TT \rightarrow Ht/Zt/Wb-\\ \text{VLQ } BB \rightarrow Wt/Zb+X\\ \text{VLQ } T_{5/3}T_{5/3} T_{5/3} \rightarrow W\\ \text{VLQ } Y \rightarrow Wb+X\\ \text{VLQ } B \rightarrow Hb+X\\ \text{VLQ } QQ \rightarrow WqWq \end{array}$	+ X multi-channel multi-channel $t + X = 2(SS)/\ge 3 e, \mu \ge 1 b, \ge 1 j$ Ye $1 e, \mu \ge 1 b, \ge 1 j$ Ye $0 e, \mu, 2 \gamma \ge 1 b, \ge 1 j$ Ye $1 e, \mu \ge 4 j$ Ye	36.1 36.1 es 36.1 es 3.2 es 79.8 es 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV Y mass 1.44 TeV B mass 1.21 TeV Q mass 690 GeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c(YWb) = 1/\sqrt{2}$ $\kappa_B = 0.5$	ATLAS-CONF-2018-032 ATLAS-CONF-2018-032 CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2018-024 1509.04261
results	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton γ^*	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 37.0 - 36.7 - 36.1 - 20.3 - 20.3	q* mass 6. q* mass 5.3 T b* mass 2.6 TeV <i>t</i> * mass 3.0 TeV y* mass 1.6 TeV	0 TeV only u^* and d^* , $\Lambda = m(q^*)$ rev only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$1 e, \mu \ge 2j Ye$ $2 e, \mu 2j -$ $2,3,4 e, \mu (SS) -$ $3 e, \mu, \tau -$ $1 e, \mu 1 b Ye$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	es 79.8 - 20.3 - 36.1 - 20.3 es 20.3 - 20.3 - 7.0 V	N ⁰ mass 560 GeV N ⁰ mass 2.0 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	$m(W_R) = 2.4 \text{ TeV, no mixing}$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1$ $a_{\text{non-res}} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1506.06020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS Search Summary

	ATLAS SUSY Searches* - 95% CL Lower Limits					4TLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeV				
		Model	e, μ, τ, γ	Jets	E _T miss	$\int \mathcal{L} dt [\mathbf{fb}]$	¹] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13$	TeV	Reference
	Si	$ ilde q ilde q, ilde q o q ilde \chi_1^0$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	\tilde{q} [2×, 8× Degen.] 0.9 \tilde{q} [1×, 8× Degen.] 0.43 0.71	1.55	$m(\tilde{\chi}_{1}^{0}) < 100 { m GeV}$ $n(\tilde{q}) - m(\tilde{\chi}_{1}^{0}) = 5 { m GeV}$	1712.02332 1711.03301
	rche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0	2-6 jets	Yes	36.1	ğ ğ Forbidden	2.0 0.95-1.6	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) = 900 \text{ GeV}$	1712.02332 1712.02332
many types	'e Sea	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e,μ ee,μμ	4 jets 2 jets	- Yes	36.1 36.1	ğ ğ	1.85 1.2 m(j	$m(\tilde{\chi}_{1}^{0})$ <800 GeV \tilde{g})- $m(\tilde{\chi}_{1}^{0})$ =50 GeV	1706.03731 1805.11381
of different	nclusiv	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 3 <i>e</i> , µ	7-11 jets 4 jets	Yes	36.1 36.1	[˜] β [˜] δ 0.98	1.8 m(ĝ)	$m(\tilde{\chi}^0_1) <$ 400 GeV)- $m(\tilde{\chi}^0_1)$ =200 GeV	1708.02794 1706.03731
		$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ 3 <i>e</i> ,μ	3 <i>b</i> 4 jets	Yes	36.1 36.1	õg õg	2.0 1.25 m(\tilde{g})	$m(\tilde{\chi}_{1}^{0})$ <200 GeV)- $m(\tilde{\chi}_{1}^{0})$ =300 GeV	1711.01901 1706.03731
BSIVI scenarios		$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	b1 Forbidden 0.9 b1 Forbidden 0.58-0.82 b1 Forbidden 0.7	$m(\tilde{\chi}_1^0)$ =300 $m(\tilde{\chi}_1^0)$ =300 GeV, BR(b $m(\tilde{\chi}_1^0)$ =200 GeV, $m(\tilde{\chi}_1^\pm)$ =300	0 GeV, BR $(b\tilde{\chi}_{1}^{0})=1$ $\tilde{\chi}_{1}^{0}$ =BR $(t\tilde{\chi}_{1}^{\pm})$ =0.5 0 GeV, BR $(t\tilde{\chi}_{1}^{\pm})$ =1	1708.09266, 1711.03301 1708.09266 1706.03731
considered	arks tion	$\tilde{b}_1\tilde{b}_1,\tilde{t}_1\tilde{t}_1,M_2=2\times M_1$		Multiple Multiple		36.1 36.1	<i>î</i> 1 <i>Forbidden</i> 0.7		$m(\tilde{\chi}_{1}^{0})=60 { m GeV} \ m(\tilde{\chi}_{1}^{0})=200 { m GeV}$	1709.04183, 1711.11520, 1708.03247 1709.04183, 1711.11520, 1708.03247
	en. squi t produc	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{H}$ LSP	0-2 <i>e</i> , <i>µ</i>	0-2 jets/1-2 Multiple Multiple	b Yes	36.1 36.1 36.1	<i>˜</i> ₁ 1.0 <i>˜</i> ₁ 0.4-0.9 <i>˜</i> ₁ Forbidden 0.6-0.8	$m(\tilde{\chi}_{1}^{0}) = 150 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1})$ $m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1})$	$m(\tilde{\chi}_1^0)=1 \text{ GeV}$ $\tilde{\chi}_1^0)=5 \text{ GeV}, \tilde{\iota}_1 \approx \tilde{\iota}_L$ $\tilde{\chi}_1^0=5 \text{ GeV}, \tilde{\iota}_1 \approx \tilde{\iota}_L$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520
	3 rd ge	$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP		Multiple		36.1	0.48-0.84	$m(\tilde{\chi}_1^0)=150 \text{ GeV}, m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{\pm})$	\tilde{t}_1^0)=5 GeV, $\tilde{t}_1 \approx \tilde{t}_L$	1709.04183, 1711.11520
	07.0	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	36.1	$\tilde{t}_1 = 0.85$ $\tilde{t}_1 = 0.46$	$m(\tilde{t}_1,$	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $\tilde{c})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$	1805.01649 1805.01649
		~~ ~ ~ .	0	mono-jet	Yes	36.1	<i>τ</i> ₁ 0.43	m(<i>t</i> ₁	$(\tilde{\chi}_1, \tilde{c})$ -m $(\tilde{\chi}_1^0)$ =5 GeV	1711.03301
		$t_2 t_2, t_2 \rightarrow t_1 + h$	1-2 e,μ	4 b	Yes	36.1	² 0.32-0.88	$m(\chi_1^-)=0$ GeV, $m(t_1)$	$-m(\chi_1^*) = 180 \text{ GeV}$	1/06.03986
		$x_1 x_2$ via wZ	ee, μμ	≥ 1	Yes	36.1		$m (\tilde{\chi}_1^{\pm})$	$m(\chi_1)=0$ $\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1712.08119
	W ect	$ \begin{aligned} &\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \text{ via } Wh \\ &\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} {\rightarrow} \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} {\rightarrow} \tilde{\tau} \tau(\nu \tilde{\nu}) \end{aligned} $	<i>ℓℓ/ℓγγ/ℓbb</i> 2 τ	-	Yes Yes	20.3 36.1		$m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\tau}, \tilde{\nu})=0$ $m(\tilde{\chi}_{1}^{1})-m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu})=0$	$m(\tilde{\chi}_{1}^{0})=0$ 0.5(m($\tilde{\chi}_{1}^{\pm}$)+m($\tilde{\chi}_{1}^{0}$)) 0.5(m($\tilde{\chi}_{1}^{\pm}$)+m($\tilde{\chi}_{1}^{0}$))	1501.07110 1708.07875 1708.07875
will present	шë	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} {\rightarrow} \ell \tilde{\chi}_1^0$	2 e,μ 2 e,μ	0 ≥ 1	Yes Yes	36.1 36.1	ℓ 0.5 ℓ 0.18	m	$\begin{array}{c} m(\tilde{\chi}_1^0) = 0 \\ n(\tilde{\ell}) \text{-} m(\tilde{\chi}_1^0) = 5 \text{ GeV} \end{array}$	1803.02762 1712.08119
		$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 4 <i>e</i> , µ	$\geq 3b$ 0	Yes Yes	36.1 36.1	Ĥ 0.13-0.23 0.29-0.88 Ĥ 0.3		$\begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}) {=} 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) {=} 1 \end{array}$	1806.04030 1804.03602
two of the	pe	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1	$ \tilde{\chi}_{1}^{\pm} = 0.46 $ $ \tilde{\chi}_{1}^{\pm} = 0.15 $		Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
most recent	g-liv ticle	Stable \tilde{g} R-hadron	SMP	- Multiplo	-	3.2	ğ ∞ [=(∞) =100 pc 0.0 pc]	1.6	(¹⁰), (00,0,1)	1606.05129
most recent	Lon	GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	2γ	-	Yes	32.8 20.3	$\tilde{\chi}_1^0$ 0.44	1.0 2.4 $1 < \tau(\tilde{\chi}_1^0) < 3$	m(X ₁)=100 GeV B ns, SPS8 model	1409.5542
roculto		$\tilde{g}\tilde{g}, \tilde{\chi}^0_1 \rightarrow eev/e\mu v/\mu\mu v$	displ. ee/eµ/µ	μ -	-	20.3	ğ	1.3 $6 < c\tau(\tilde{\chi}_1^0) < 1000 \text{ r}$	mm, m($\tilde{\chi}_1^0$)=1 TeV	1504.05162
lesuits		LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	eµ,eτ,µτ	-	-	3.2	$\tilde{\nu}_{\tau}$	1.9 λ' ₃₁₁ =0.11,	$\lambda_{132/133/233}=0.07$	1607.08079
		$\begin{array}{c} \chi_1\chi_1/\chi_2 \to WW/Z\ell\ell\ell\ell\nu\nu\\ \tilde{g}\tilde{g}, \tilde{g} \to qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to qqq \end{array}$	4 <i>e</i> ,μ 0 4	0 -5 large- <i>R</i> j	ets -	36.1	$\tilde{x}_{1}/\tilde{x}_{2} = [\tilde{x}_{i33} \neq 0, \tilde{x}_{12k} \neq 0]$ 0.02 $\tilde{g} = [m(\tilde{x}_{1}^{0}) = 200 \text{ GeV}, 1100 \text{ GeV}]$	1.3 1.9	$m(\chi_1)=100 \text{ GeV}$ Large λ''_{112}	1804.03568
	νd	~~~		Multiple		36.1	$\tilde{g} [\lambda''_{112} = 2e-4, 2e-5]$ 1.05 $\tilde{g} [\lambda''_{112} = 1-4e-2]$	2.0 $m(\tilde{\chi}_1^0)=2$	200 GeV, bino-like	ATLAS-CONF-2018-003
		$gg, g \to tbs / g \to tt \chi_1, \chi_1 \to tbs$ $\tilde{t}\tilde{t}, \tilde{t} \to t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs$		Multiple		36.1	$\tilde{g} = [\lambda_{323}^{(2)} - 1, 0, 0, 0]$ $\tilde{g} = [\lambda_{323}^{(2)} - 2e-4, 1e-2]$ 0.55 1.05	1.0 2.1 $m(\tilde{\chi}_1)=2$ $m(\tilde{\chi}_1)=2$	200 GeV, bino-like	ATLAS-CONF-2018-003 ATLAS-CONF-2018-003
		$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	0	2 jets + 2 i	b -	36.7	<i>ĩ</i> ₁ [<i>qq</i> , <i>bs</i>] 0.42 0.61	0.4.1.45	(i ho/hu) 000/	1710.07171
		$l_1 l_1, l_1 \rightarrow D l$	2 e,µ	20	-	30.1	<i>u</i> ₁	U.4-1.40 BR	(<i>u</i> 1→ <i>De</i> / <i>Dµ</i>)>20%	1 / 10.05544
								I I		
	*Only	a selection of the available ma	ass limits on i	new state	es or	1() ⁻¹ 1	Mass so	cale [TeV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Search for single top + E_Tmiss

Search for single top + E_Tmiss

34

Displaced Jets in Muon System

Plethora of models predicted long-lived particles: SUSY, Neutral Naturalness, DM

Event selection relies on reconstruction of displaced vertices in the Muon Spectrometer

• isolation criteria from ID vertices and calo-jets imposed

SRs include 1 MS-vtx and 2 MS-vtx events

limits extracted based on event yields

SM Precision Measurements

- Flavour physics
- Electroweak physics

Properties of Heavy Particles

- top quark physics
- Higgs physics

Searches for BSM Physics

Heavy-Ion Physics

Candidate event: light-by-light scattering in Pb-Pb collisions

Photon-Jet Momentum Correlations in Pb+Pb

Allows to probe energy loss behaviour of jets in hot, deconfined medium Investigate $x_{J\gamma} = p_T^{jet} / p_T^{\gamma}$ in back-to-back photon+jet events in $\sqrt{s} = 5.02$ TeV Pb+Pb collisions (and compare also with pp data)

Distributions corrected back to particle level for comparison with predictions

Allow tuning of models predicting energy loss of energetic partons in hot nuclear medium

Upgrade Schedule

LHC / HL-LHC Plan

ATLAS Phase 1 Upgrades:

- Install New Small Wheel (Muon System)
- Improved Triggering (L1Calo, Fast Track Trigger)
- Revamp read-out electronics

ATLAS Phase 2 Upgrades:

- complete new Inner Tracker (ITk) (all-silicon tracking)
- High-Granularity Timing Detector
- Muon Spectrometer Upgrade

Some HL-LHC Prospects (assuming 3 ab-1)

CERN-LPCC-2018-04

39

Full characterization of Higgs sector possible

Precision constraints on Higgs self-coupling

Summary

Amazing variety and breadth of physics results at end of Run-2 • Many analyses with 160 fb⁻¹ still on their way

precision of some measurements is simply astounding

Intense schedule for Phase-I upgrades in preparation of Run-

Improvements in precision and search sensitivities with 300 fb-1

Phase-II for HIL-LHC: ambitious and challenging program

Impressive long-term prospects for 3000 fb-1 of data

2 more decades of exciting physics yet to come from ATLAS!

Accumulated Luminosity

Jet Cross-Sections

Cross-Section Measurements

Cross-Section Measurements

 $\overline{\Delta} pp \rightarrow t\overline{t}$ ⁷ TeV, 4.6 fb⁻¹, Eur. Phys. J. C 74:3109 (2014) 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C 74:3109 (2014) 13 TeV, 3.2 fb⁻¹, arXiv:1606.02699 $\mathbf{J} pp \rightarrow tq$ 7 TeV, 4.6 fb⁻¹, PRD 90, 112006 (2014) 8 TeV, 20.3 fb⁻¹, arXiv:1702.02859 13 TeV, 3.2 fb⁻¹, arXiv:1609.03920 $\checkmark pp \rightarrow WW$ 7 TeV, 4.6 fb⁻¹, PRD 87, 112001 (2013) 8 TeV, 20.3 fb⁻¹, JHEP 09 029 (2016) 13 TeV, 3.2 fb⁻¹, arXiv:1702.04519 $\overrightarrow{\nabla}$ pp $\rightarrow WZ$ 7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C (2012) 72:2173 8 TeV, 20.3 fb⁻¹, PRD 93, 092004 (2016) 13 TeV, 3.2 fb⁻¹, Phys. Lett. B 762 (2016) \overline{O} pp $\rightarrow H$ ⁷ TeV, 4.5 fb⁻¹, Eur. Phys. J. C76 (2016) 6 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C76 (2016) 6 13 TeV, 36.1 fb⁻¹, ATLAS-CONF-2017-047 \checkmark pp \rightarrow ZZ 7 TeV, 4.6 fb⁻¹, JHEP 03, 128 (2013) 8 TeV, 20.3 fb⁻¹, JHEP 01, 099 (2017) 13 TeV, 36.1 fb⁻¹, ATLAS-CONF-2017-031

BDTs for $B^{0}(s) \rightarrow \mu^{+}\mu^{-}$

BDTs for $B^{0}(s) \rightarrow \mu^{+}\mu^{-}$

Variable	Description	arXiv:1812.03017
p_{T}^B	Magnitude of the <i>B</i> candidate transverse momentum \vec{p}_{T}^{B} .	
$\chi^2_{\rm PV,DV} _{xy}$	Compatibility of the separation $\overrightarrow{\Delta x}$ between production (i.e. associated PV) and decay (DV vertices in the transverse projection: $\overrightarrow{\Delta x}_{T} \cdot \Sigma_{\overrightarrow{\Delta x}_{T}}^{-1} \cdot \overrightarrow{\Delta x}_{T}$, where $\Sigma_{\overrightarrow{\Delta x}_{T}}$ is the covariance matrix.	/)
$\Delta R_{\rm flight}$	Three-dimensional angular distance between \overrightarrow{p}^B and $\overrightarrow{\Delta x}$: $\sqrt{\alpha_{2D}^2 + (\Delta \eta)^2}$	
$ \alpha_{2D} $	Absolute value of the angle in the transverse plane between $\overrightarrow{p_T}^B$ and $\overrightarrow{\Delta x_T}$.	
L_{xy}	Projection of $\overrightarrow{\Delta x_{T}}$ along the direction of $\overrightarrow{p}_{T}^{B}$: $(\overrightarrow{\Delta x_{T}} \cdot \overrightarrow{p_{T}}^{B})/ \overrightarrow{p_{T}}^{B} $.	
IP_B^{3D}	Three-dimensional impact parameter of the B candidate to the associated PV.	
DOCA _{µµ}	Distance of closest approach (DOCA) of the two tracks forming the <i>B</i> candidate (three-dime sional).	n-
$\Delta \phi_{\mu\mu}$	Azimuthal angle between the momenta of the two tracks forming the <i>B</i> candidate.	
$ d_0 ^{\text{max}}$ -sig.	Significance of the larger absolute value of the impact parameters to the PV of the track forming the B candidate, in the transverse plane.	ΣS
$ d_0 ^{\min}$ -sig.	Significance of the smaller absolute value of the impact parameters to the PV of the track forming the <i>B</i> candidate, in the transverse plane.	S
$P_{\rm L}^{\rm min}$	The smaller of the projected values of the muon momenta along $\overrightarrow{p_T}^B$.	
<i>I</i> _{0.7}	Isolation variable defined as ratio of $ \vec{p}_T^A $ to the sum of $ \vec{p}_T^B $ and the transverse momenta of all additional tracks contained within a cone of size $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.7$ around the <i>B</i> direction. Only tracks matched to the same PV as the <i>B</i> candidate are included in the sum	of ne n.
DOCA _{xtrk}	DOCA of the closest additional track to the decay vertex of the B candidate. Only track matched to the same PV as the B candidate are considered.	ζS
$N_{\rm xtrk}^{ m close}$	Number of additional tracks compatible with the decay vertex (DV) of the <i>B</i> candidate with $\ln(\chi^2_{\text{xtrk},\text{DV}}) < 1$. Only tracks matched to the same PV as the <i>B</i> candidate are considered.	h
$\chi^2_{\mu,\mathrm{xPV}}$	Minimum χ^2 for the compatibility of a muon in the <i>B</i> candidate with any PV reconstructed is the event.	n

Angular Analysis of $B^0 \rightarrow K^* \mu^+ \mu^-$: Formalism

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L \mathrm{d}\cos\theta_K \mathrm{d}\phi \mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_L \right]$$
$$-F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi$$
$$+S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi$$
$$+S_6 \sin^2\theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi$$
$$+S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi \right]. \quad (2.1)$$

Angular Analysis of $B^0 \rightarrow K^* \mu^+ \mu^-$: Diagrams

W Mass Measurement

VBS WZ Differential Cross-Sections

Interpretation: Anomalous Couplings

Interpret electroweak WW results in terms of anomalous quartic couplings

Use effective field theory: lowest order BSM coefficients parametrized by α_4 , α_5

Interpretation not yet updated with latest Run-2 results

$$\alpha_4 \mathcal{L}_4 = \alpha_4 [\operatorname{tr}(V_\mu V_\nu)]^2$$

$$\alpha_5 \mathcal{L}_5 = \alpha_5 [\operatorname{tr}(V_{\mu} V^{\mu})]^2$$

ATLAS accessing processes with sub-fb x-sections

Top Mass: Uncertainties

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} =$	8 TeV
Event selection	Standard	Standard	BDT
$m_{\rm top}$ result [GeV]	172.33	171.90	172.08
Statistics	0.75	0.38	0.39
– Stat. comp. (m_{top})	0.23	0.12	0.11
-Stat. comp. (JSF)	0.25	0.11	0.11
– Stat. comp. (bJSF)	0.67	0.34	0.35
Method	0.11 ± 0.10	0.04 ± 0.11	0.13 ± 0.11
Signal Monte Carlo generator	0.22 ± 0.21	0.50 ± 0.17	0.16 ± 0.17
Hadronization	0.18 ± 0.12	0.05 ± 0.10	0.15 ± 0.10
Initial- and final-state QCD radiation	0.32 ± 0.06	0.28 ± 0.11	0.08 ± 0.11
Underlying event	0.15 ± 0.07	0.08 ± 0.15	0.08 ± 0.15
Colour reconnection	0.11 ± 0.07	0.37 ± 0.15	0.19 ± 0.15
Parton distribution function	0.25 ± 0.00	0.08 ± 0.00	0.09 ± 0.00
Background normalization	0.10 ± 0.00	0.04 ± 0.00	0.08 ± 0.00
W+jets shape	0.29 ± 0.00	0.05 ± 0.00	0.11 ± 0.00
Fake leptons shape	0.05 ± 0.00	0	0
Jet energy scale	0.58 ± 0.11	0.63 ± 0.02	0.54 ± 0.02
Relative b -to-light-jet energy scale	0.06 ± 0.03	0.05 ± 0.01	0.03 ± 0.01
Jet energy resolution	0.22 ± 0.11	0.23 ± 0.03	0.20 ± 0.04
Jet reconstruction efficiency	0.12 ± 0.00	0.04 ± 0.01	0.02 ± 0.01
Jet vertex fraction	0.01 ± 0.00	0.13 ± 0.01	0.09 ± 0.01
b-tagging	0.50 ± 0.00	0.37 ± 0.00	0.38 ± 0.00
Leptons	0.04 ± 0.00	0.16 ± 0.01	0.16 ± 0.01
Missing transverse momentum	0.15 ± 0.04	0.08 ± 0.01	0.05 ± 0.01
Pile-up	0.02 ± 0.01	0.14 ± 0.01	0.15 ± 0.01
Total systematic uncertainty	1.04 ± 0.08	1.07 ± 0.10	0.82 ± 0.06
Total	1.28 ± 0.08	1.13 ± 0.10	0.91 ± 0.06

Top Width Measurement

EPJC 78 (2018) 129

Search for 4-Top Production

4 Top Search

	Preselection require	ements				
Requirement	Single-lepton Dilepton					
Trigger	Single-lepton triggers					
Leptons	1 isolated	2 isolated, opposite-sign				
Jets	≥ 5 jets	≥ 4 jets				
<i>b</i> -tagged jets	$\geq 2 b$ -tagged jets					
Other	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$m_{\ell\ell} > 50 \mathrm{GeV}$				
	$E_{\mathrm{T}}^{\mathrm{miss}} + m_{\mathrm{T}}^{W} > 60 \mathrm{GeV}$	$ m_{\ell\ell} - 91 \text{ GeV} > 8 \text{ GeV}$				

arXiv:1811.02305

Other Top Measurements

Higgs Summary Results

Higgs-Lepton Coupling: H→ττ

3.4

4.1

5.4

 $H \rightarrow \tau \tau$ allows to probe Higgs-lepton couplings

Run-2 data allows ATLAS to establish unequivocal observation of decay mode (Run-1 observation through ATLAS+CMS comb.)

arXiv:1811.08856

Expected

H->bb: Additional Plots

Higgs Pair Production: Additional Plots

Higgs Pair Production: Additional Plots

