Inferences About the Equation of State from Gravitational Waves and NICER
Dilepton production in heavy-ion collisions
Run 1 and Run 2 of the Large Hadron Collider (LHC) at CERN produced huge volumes of data whose analysis will continue to deliver large numbers of physics results. To make this possible, the LHC experiments have been relying on services of the Worldwide LHC Computing Grid (WLCG).
At present, the LHC experiments are preparing for Run 3 of the LHC which will bring significantly higher...
Heavy-ion collisions covering a wide range of collision energies provide a vast amount of observables characterizing the properties of strongly-interacting matter. In particular collisions towards the high baryon-density regime of the QCD phase diagram have become of interest to study the phase transition between hadronic and partonic matter and to locate a possible critical end point. To...
- Study of initial state and causal dissipative fluid expansion in pp and pPb collisions at LHC energies with percolation color sources
Past experiments have revealed discrepancies in the consistency of the data from neutron form factor measurements, suffering from systematic uncertainty of the neutron detection. Measurements of the neutron's magnetic form factor $G^n_M$ suffer from insufficient detection efficiency whereas measurements of the neutron's electric form factor $G^n_E$ suffer from large backgrounds and low...
The idea of adding an Electromagnetic CALorimeter to the HADES spectrometer came from an interest in photon measurement and consequentially the detection of neutral mesons and resonances via their decay in photon pairs. Another advantage of having ECAL in the system is a significant improvement of electron-pion separation at high momenta. The detector is based on lead-glass modules with a PMT...
Cold-matter and hot-medium effects in p-Pb collisions at LHC energies - Hung
The recently developed renormalization group improved optimized perturbation theory (RGOPT) is applied to QCD at zero temperatures and finite densities. The pressure for cold and dense quark matter is calculated as a first application of this technique to QCD in the presence of a control parameter. At leading order a non-perturbative and completely scale invariant result is found. At next-to...
Investigations of few-nucleon systems provide suitable testing ground for different models of the nucleon-nucleon interaction. In three-nucleon systems, at intermediate energy, below the pion production threshold, the effects of three-nucleon forces (3NF) are generally small and hard for experimental study. To take a step forward into larger system, a four-nucleon (4N) were studied, where...
Hyperon-nuclear interactions and strangeness in neutron stars
New physics with coherent neutrino-nucleus scattering
The KM3NeT project: status and future perspectives
A series of frontier experiments will be presented based on high sensitivity X-ray spectroscopy,aiming on one side to measure low-lying orbits transitions in exotic kaonic atoms at accelerators, on the other to unveil eventual signal from Pauli-violating atoms, predicted to be formed in theories beyond the Standard Model.
The first part of the talk will be dedicated to kaonic atoms studies...
The production of particles in heavy ion collisions is of great importance to inspect the properties and dynamics of hadronic matter. As part of the HADES experiment at GSI Ag+Ag collisions at beam energies of 1.58A GeV have been performed in spring 2019. In the light of these experimental studies this work provides a theoretical prediction of the expected results. The hadronic transport...
The production of light (anti-)(hyper-)nuclei in heavy-ion collisions at the LHC is considered in the framework of the Saha equation, making use of the analogy between the evolution of the early universe after the Big Bang and that of "Little Bangs" created in the lab. Assuming that disintegration and regeneration reactions involving light nuclei proceed in relative chemical equilibrium after...
The new experiment PADME is located in the Beam Test Facility of the INFN Laboratori Nazionali di Frascati and its main goal its to search for a light boson A′ (usually called dark photon) associated to a broken U(1) gauge symmetry holding in a secluded sector and acting as a portal between the visible and the dark sector.
PADME has collected a first set of commissioning data in 2018/2019...
The study of hadronic resonances by the ALICE experiment is of special importance in order to disentangle the hadronic final-state effects in relativistic heavy-ion collisions at the LHC. Short-lived hadronic resonances are sensitive probes of the dynamics and properties of the medium formed after hadronisation. Due to their short lifetimes, they decay when the system is still dense and the...
The light-cone definition of Parton Distribution Functions (PDFs) does not allow for a direct ab initio determination employing methods of Lattice QCD simulations that naturally take place in Euclidean spacetime. In this presentation we focus on pseudo-PDFs where the starting point is the equal time hadronic matrix element with the quark and anti-quark fields separated by a finite distance. We...
Multi-messenger astronomy with high-energy neutrinos
Status of the B-meson flavor anomalies
Scattering experiments have been one of the main sources of information on hadron-hadron interactions. They provide a large amount of data on nucleon-nucleon potentials but a limited amount for hyperon-nucleon and hyperon-hyperon pairs.
The understanding of interactions amongst baryon and anti-baryons as well rely on an even smaller set of data involving mostly nucleon-antinucleon...
For 20 years the Pierre Auger Observatory is measuring ultra-high energy cosmic rays. Among the early discoveries was the confirmation of a strong suppression of the flux of cosmic rays at energies beyond 10EeV. If cosmic rays were mostly protons of extragalactic origin, as it was supposed, such a suppression is expected from the absorption of cosmic rays in the CMB. However, subsequent...
Low-energy cosmic anti-deuterons are unique probe for search of exotic processes in the Universe such as Dark Matter annihilation, since the production rate of these ions through secondary processes in interstellar medium is very low. However, the lack of experimental data at low energies hampers precise predictions of the expected anti-deuteron fluxes near Earth, with both anti-deuteron...
The PUMA project (antiProton Unstable Matter Annihilation) aims at using low energy antiprotons to probe the tail of the radial density of short-lived nuclei. With PUMA, the ratio of proton and neutron annihilations after capture will be determined, giving access to a new observable to quantify the ratio of proton to neutron densities at the nuclear periphery. PUMA aims at transporting one...
The momentum distribution in the final state of ion collisions is explained by the collective evolution of the initial energy density in a heavy-ion experiment. Due to the low statistic in a single event, this model is tested by studying many events. Consequently, the observation is convoluted by statistical fluctuation which contains information about the statistical properties of the initial...
The Belle II experiment at SuperKEKB, an asymmetric $e^+e^-$ collider, has a rich program of Standard Model and Beyond the Standard Model physics.
The collider, a next generation B factory, started operation in 2016 and successfully commissioned with first collisions in April 2018. In 2019 a first physics run with the full Belle II detector has taken place. Ultimately
SuperKEKB will reach...
"Selected results of the LHCb experiment on heavy ion collisions studied in the collider and fixed-target modes will be presented. The clear evidence of the impact of the production mechanism (prompt/delayed, p-p or p-Pb systems) on the transverse momentum and rapidity distributions for 𝐽/𝜓, 𝐷0 and ϒ(𝑛𝑠) species is demonstrated. The interpretation of the observations in frames of theoretical...
Recent Flavour results from LHCb
Reaching new precision frontiers in nuclear physics brings up new experimental challenges as well as the demand for more sophisticated theoretical calculations. Especially in parity-violation electron scattering experiments the contribution from higher order processes, such as two-photon exchange, is comparable in size with the observed asymmetry $A_{PV}$. Hence, a precise knowledge of this...
The HADES spectrometer is located at the SIS18 accelerator at the GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt. Recently an electromagnetic calorimeter (ECAL) detector was added to the set-up. The ECAL read-out system is based on the PaDiWa-AMPS Charge-to-Time-over-Threshold front-end board for the Trigger and Read-out Board (TRB) platform. The required discriminators, the...
In heavy nuclei, the distribution of neutrons extends out further than the proton distribution forming a so-called “neutron skin”. An accurate experimental determination of the neutron skin thickness of heavy nuclei would provide a unique constraint on the symmetry energy of the nuclear Equation Of State which strongly depends on poorly constrained three-body forces. Photons have an advantage...
We investigate the complex spectrum of the massive Dirac operator in 2+1-flavor QCD, at nonzero temperature and isospin chemical potential, using the extension of the Banks-Casher relation to the case of Complex Dirac eigenvalues (derived for the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential), as a prescription to obtain information on the BCS gap from the...
The efficient production of cold antihydrogen atoms, at CERN's Antiproton Decelerator, has opened up the possibility to perform a direct measurement of the Earth's gravitational acceleration g on a purely antimatter system. Indeed, from the experimental point of view, very little is known about the gravitational interaction between matter and antimatter. In particular, the Weak Equivalence...
In recent years, interest in charmonium spectroscopy has been renewed by
the unexpected discovery of multiple states that seemingly do not fit a conventional
charmonium (ccbar) assigment, the so-called XYZ states. Although there are strong
indications that these states are in fact exotic, there is no consensus on their
exact nature. Therefore, it is of high importance to gather as much...
Recent Progress in Core-Collapse Supernovae Simulations
Deep Underground Neutrino Experiment
We study the nuclear abundances produced by neutrino process during supernova (SN) explosion. In this presentation, we show the elements of $^{7}$Li, $^{11}$B, $^{92}$Nb, $^{98}$Tc, and $^{138}$La, which are mainly produced by neutrino reactions. To describe the neutrino-induced reaction rates, we consider the neutrino scattering with electron background and neutrinos themselves near the...
We investigate the electron screening effect on the stellar nucleosynthesis. The dense electron gases in the stellar environments screen the Coulomb interaction between reacting nuclei. In particular, the role of screening effects becomes important in the massive star since it consists of dense ions. In addition, most stellar objects have a magnetic field, which affects the electric screening...
The Belle II experiment at the SuperKEKB energy-asymmetric $e^+ e^-$ collider is a substantial upgrade of the B factory facility at the Japanese KEK laboratory.
Exploiting the improved collider, Belle II will play an important role in the Lepton Flavour Violation (LFV) field by collecting a huge amount of statistics (50 ab$^{-1}$ expected by 2028) which allows to probe new physics scenario...
Due to their large masses, heavy quarks are produced in the
early stages of the relativistic heavy-ion collisions via initial hard
scatterings. Therefore, they are considered as effective probes of the
hot and dense QCD medium formed in such collisions since they
witness its full evolution. In pp collisions, the measurement of heavy-
flavour hadron production cross-sections can be used to test...
The respective contributions of cold-matter and hot-medium effects to the suppression of $\Upsilon(nS)$ mesons in p-Pb collisions at energies reached at the Large Hadron Collider (LHC) are investigated [1]. Whereas known alterations of the parton density functions in the lead nucleus and coherent parton energy loss [2] account for the leading fraction of the modifications in cold nuclear...
Despite decades of studies which have seen the nuclear charge distribution being measured with increasing precision, the neutron distribution remains elusive. The difference between the neutron and proton distributions is often expressed as the difference of their root mean square radii: the neutron skin thickness. Recently, the A2 collaboration at MaMi has measured the skin thickness in lead...
Scaling properties of Yang-Mills fields are used to show that fractal structures are expected to be present in system described by those field theories. We show that the fractal structure leads to recurrence formulas that allow the determination of non perturbative effective coupling. Fractal structures also cause the emergence of non extensivity in the system, which can be described by...
New data on lifetimes of excited states in the ground state band of $^{178}$W,
$^{178}$Os, and $^{182}$Os are presented. The mean lifetimes of the 2$^+_1$ and 4$^+_1$
were measured using the
fast timing method with LaBr$_3$ detectors in the $\nu$-Ball setup at the IPN Orsay
and at HORUS at the IKP Cologne. The isotopes of interest were produced in fusion-evaporation
reactions. The new results...