25 May 2017 to 2 June 2017
Mainz Institute for Theoretical Physics, Johannes Gutenberg University
Europe/Berlin timezone

Towards homotopical algebraic quantum field theory

30 May 2017, 14:30
1h
02.430 (Mainz Institute for Theoretical Physics, Johannes Gutenberg University)

02.430

Mainz Institute for Theoretical Physics, Johannes Gutenberg University

Staudingerweg 9 / 2nd floor, 55128 Mainz

Speaker

Dr Alexander Schenkel (University of Nottingham)

Description

An algebraic quantum field theory is an assignment of algebras to spacetimes. These algebras should be interpreted as quantizations of the algebras of functions on the moduli spaces of a classical field theory. In many cases of interest, especially in gauge theories, these moduli spaces are not conventional spaces but `higher spaces' called stacks. Consequently, functions on such spaces do not form an algebra but a `higher algebra' which one may describe by homotopical algebra. This motivates us to study assignments of `higher algebras' to spacetimes, which is what I call homotopical algebraic quantum field theory. In this talk I will clarify the above picture and explain its advantages compared to traditional algebraic quantum field theory. For this I will also present simple toy-models related to Abelian gauge theory and homotopy Kan extensions.

Presentation materials