13–24 Mar 2017
Mainz Institute for Theoretical Physics, Johannes Gutenberg University
Europe/Berlin timezone

Theoretical Physics Implications of the Advanced LIGO Gravitational Wave Observation

23 Mar 2017, 10:45
1h 15m
02.430 (Mainz Institute for Theoretical Physics, Johannes Gutenberg University)

02.430

Mainz Institute for Theoretical Physics, Johannes Gutenberg University

Staudingerweg 9 / 2nd floor, 55128 Mainz

Speaker

Prof. Nicolas Yunes (Montana State University)

Description

The recent gravitational-wave observations by Advanced LIGO provided the first opportunity to learn about theoretical physics mechanisms that may be present in the extreme gravity environment of coalescing binary black holes. The LIGO-Virgo collaboration verified that this observation is consistent with Einstein's theory of General Relativity and the Kerr hypothesis, constraining the presence of parametric anomalies in the signal. In this talk, I will discuss the plethora of additional inferences that can be drawn on theoretical physics mechanisms from the absence of such anomalies in the data. I will classify these inferences in those that inform us about the generation of gravitational waves, the propagation of gravitational waves and the structure of exotic compact object alternatives to black holes. I will then focus on how GW150914 constrains the generation of gravitational waves (e.g. the activation of scalar fields, black hole graviton leakage into extra dimensions, the variability of Newton's constant, the breakage of Lorentz invariance and parity invariance) as well as the propagation of gravitational waves (e.g. the speed of gravity and the existence of large extra dimensions).
Overview or Regular Talk? Overview: 75 min.

Primary authors

Prof. Frans Pretorius (Princeton University) Dr Kent Yagi (Princeton University) Prof. Nicolas Yunes (Montana State University)

Presentation materials