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What is Montana?
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Montana
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eXtreme Gravity Institute
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Now accepting 
Applications for 
our Physics PhD 

Program!!
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eXtreme Matter meets eXtreme Gravity
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Why is this important now?
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Why is this even more important in the near future?
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LHO

LLO Virgo/AdV

GEO

KAGRA

Ligo-India

LISA Pathfinder Success!
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What do I do and what will this talk be about?
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Experimental 
Relativity

Analytical 
Relativity

Gravitational Wave 
Astrophysics

What can we learn about gravity  
from precision gravitational wave observations?
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Roadmap
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Extreme Gravity

Inferences

Modeling
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[RIT Group]eXtreme Gravity: where gravity is  
(a) very strong, 
(b) non-linear 
(c) dynamical

Generation of GWs: Accelerating masses 
(t-variation in multipoles)

GW Spectrum: Kepler 3rd Law:                                   ,  

Propagation of GWs: Light speed, weakly 
interacting, 1/R decay.

Example: Binary BH merger,

Gravitational Waves (GWs): Wave-like perturbation  
of the grav. field.

What is eXtreme Gravity & Gravitational Waves?

in about 1079 gravitons
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1. eXtreme Gravity:

Sources: Compact Object Coalescence, SN, deformed NSs, etc.

2. Clean:

Processes: Generation & Propagation of metric perturbation

Absorption is negligible, lensing unimportant at low z,  
accretion disk and B fields unimportant during inspiral. 
[Yunes, et al PRL (’11), Kocsis, et al PRD 84 (’11), Barausse, et al PRD 89 (’14)]

3. Localized: Point sources in spacetime Constraint Maps
[Yunes & Pretorius, PRD 81 (’10)]

How are GW Probes of eXtreme Gravity Different?
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Field 
Strength

Curvature 
Strength

GWs probe eXtreme Gravity

Extreme 
Gravity Tests

Weak 
Field 
Tests

[Will, Liv. Rev., 2005, Psaltis, 
Liv. Rev., 2008, Baker, et al, 
Siemens & Yunes, Liv. Rev. 
2013, Yunes, et al PRD 2016]

What Physics Regime do GWs Probe?
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[Yunes, Yagi, 
Pretorius, PRD ’16]

Extreme Gravity versus Strong Gravity

Planck 
Curvature

1037

Planck Time10-44

“Extreme Gravity” is no where close 
to Quantum Gravity.
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Agnostic Approach

Theorists need to speak up and  
argue for what to search for

Religious Approach

Effective Field Theory

Broken Symmetries

Generic Anomalies

Advantages:

Disadvantages:

Generic properties of gravity

Hard to put it on a computer

Regime of validity of EFT 

PT Analytic calculations are “doable”

Pick a theory and stick to it!

Eg. scalar-tensor theories, EA theory,  
EdGB gravity, Bigravity

Advantages:

Disadvantages:

You have the complete action

Non-generic approach

Hard to make theory pass all tests

You can put it on a computer

What is interesting to constrain?
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Main Difficulty of the Religious Approach: Catch-22
Case Study: Scalar-Tensor Theories
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[Damour & Esposito-Farese ’92 - ’98]

Induce Strong Field Corrections

weak field, inside star with K2 ~ |b Tmat| ~ |-b r|

j’(0)=0   &   j is C1 @ sfc R   &   b < 0

' =

'1
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Pass Solar System Constraints
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weak field analysis                                  
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test if you set '2
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(Shapiro time-delay)
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Inducing Strong Field Corrections

[Damour & Esposito-Farese ’92 - ’98]

Matching the interior and exterior 
solutions at the surface

'
outside

= '1 + ↵
sc

m

r

'inside =
'1

cos(KR)

sin(Kr)

Kr

related to
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Cosmological Evolution and a Catch-22
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�
ppN

� 1 = �
✓

2�2'2
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today

< 2.3⇥ 10�5 But what is jtoday after cosmological evolution? 

2

3� '02'
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Option 1: � > 0 '
today

⇠ 0V' > 0 and �ppN � 1 ⌧ 1

Option 2: � < 0 and �ppN � 1 ⇠ �2

Cosmological Evolution allows massless Scalar-Tensor theories to pass 
Solar System constraints if b<0 spontaneous scalarization is disallowed

[Sampson et al ’14,  
Anderson, Yunes, 
Barausse ’16]

[Damour & 
Nordvedt ’93]
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Extreme Gravity

Inferences

Modeling
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[C. Hanna, PSU]signal-to-
noise ratio 

(SNR)

detector noise 
(spectral noise 

density)

data

template (projection of 
GW metric perturbation)

template param that 
characterize system

⇢2 ⇠
Z

s̃(f)h̃(f,�µ)

Sn(f)
df

1. Create template “filters”

2. Cross-correlate filters & data

3. Find filter that maximizes    
    the cross-correlation.

Modelling

Data 
Analysis

How do we extract signals from the noise?
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[Blanchet, LRR]

How do we build GW models?

The GW models are  

• very complicated,  
• require numerics and analytics 
• highly accurate 
• took over 50 years to develop  

[A. Buonanno’s talk]
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Generation

Propagation
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Blanchet’s Living Reviews

I. Construct the Hamiltonian (ie, binding energy).

II. Construct the RR (dissipative) force.

III. Determine propagating dof and its EOM

IV. Construct the propagator & the dispersion relation

Model for the GW Observable during Inspiral (PN)

gravitational 
wave

symmetric 
mass ratio

distance to 
the source

inclination 
angle

total 
mass

orbital 
freq.

orbital 
phase

h⇥(t) ⇠
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Case Study: Dipole Radiation

Conservation laws disallow dipole 
radiation in GR, but not in mod gravity

Dipole radiation forces binary to inspiral 
faster and GWs to chirp faster

GW Phase is sensitive  
to rate of inspiral

Ėb = �L = � (LGW + L✓)

Dipole radiation removes energy more 
effectively than quadrupole radiation
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D...
I ij

...
I
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 GW = ḟT 2
g =

✓
dE

df

◆�1 ✓dE

dt

◆
T 2
g ⇠ (⇡Mf)�5/3 + �✓ (⇡Mf)�7/3

How is the GW observable modified? Generation Example
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Case Study: Massive Graviton

[Will, PRD 1998, Will & Yunes, CQG 2004,  Berti, Buonanno & Will, CQG 2005 Mirshekari, Yunes & Will, PRD 2012]

Special Relativity tells us that for a 
propagating massive particle

GWs emitted close to merger travel faster 
than those emitted in the early inspiral.

GW Phase is sensitive to the GW 
frequency x GW travel time

Massive graviton effect accumulates with distance travelled.

What can we learn from GWs? Propagation Example
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Propagation Effect Enhancement Conjecture
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Correction in GW prop. 
proportional to DL

Correction in GW gen. 
proportional to total mass

Modifications in GW propagation dominate over 
modifications in GW generation irrespective of PN order 

Case Study: Massive GravitonGeneric Argument

Ratio is then
� 
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Yunes & Pretorius, PRD 2009 
Mirshekari, Yunes & Will, PRD 2012 
Chatziioannou, Yunes & Cornish, PRD 2012

I. Parametrically deform the Hamiltonian.

II. Parametrically deform the RR force.

III. Deform waveform generation.

IV. Parametrically deform g propagation.

Result: To leading PN order and leading GR deformation

A = AGR + �A
�AH,RR = ↵̄H,RRv

āH,RR

h = F+h+ + F⇥h⇥ + Fshs + . . .

E2
g = p2gc

4 + ↵̃p↵̃g

h̃(f) = h̃GR(f) (1 + ↵fa) ei�f
b

Parameterized post-Einsteinian Framework



h̃BD(f ;~�GR,�BD)

”◆0”

h̃D>4(f ;~�GR,�D>4)

h̃LV (f ;~�GR,�LV )

h̃ppE(f ;~�GR,~�ppE)

1PN

2PN

3PN

4PN

-1PN

-2PN

-3PN

-4PN

0.5PN

1.5PN

2.5PN

3.5PN

-0.5PN

-1.5PN

-2.5PN

-3.5PN

0PN
Current  

Constraints
GW  

Constraints

GR
BD MG

EDGB

CS

Gdot

LV
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[Yunes & Pretorius, PRD 2009]

h̃(f) = h̃GR(f) (1 + ↵fa) ei�f
b

The parameterized post-Einsteinian Framework

[MSU: Cornish et al PRD 84 (’11), Sampson et al PRD 87 (’13), Sampson, et al PRD 88 (’13), Sampson et al PRD 89 (’14),  
Nikhef: Del Pozzo et al PRD 83 (’11), Li et al PRD 85 (’12), Agathos et al PRD 89 (’14), Del Pozzo et al CQG (’14).]

Test Principles, not Theories



Yunes

Roadmap

28

Extreme Gravity

Inferences

Modeling



YunesExtreme Gravity Modeling Inferences 29

Scalar Dipole 
Radiation

Anomalous 
Acceleration

Parity 
Violation

Lorentz 
Violation

Stronger GravityWeaker Gravity

[Yunes, Yagi, 
Pretorius, PRD ‘16]

GW Constraints on Modified Generation
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Case Study: Scalar-Tensor 
(Brans Dicke) theory

But what about the higher PN order terms?

Caveat: These constraints are 
“conservative.” We could do better if we 
knew how the merger was modified and 
we included this in the analysis. 
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E2 = (pc)2 + A(pc)↵
⇣vg
c

⌘2
= 1 + (↵� 1)AE↵�2

Massive 
Graviton

Doubly  
Special Relativity

SME, Horava-Lifshitz,  
Extra-Dimensions

Multifractal 
Spacetime

Superluminal

Subluminal

[Yunes, Yagi, 
Pretorius, PRD ‘16]

…. —> SME (5.5PN, 7PN)

GW Constraints on Modified Propagation
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[Yunes, Yagi, Pretorius, PRD ‘16]

Theory Implications of GW Observations 
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The Problem of Degeneracies
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�EdGB ⇠ ⇣EdGB

�
m2

1s
2
2 �m2

2s
2
1

�
sA =

2

�2
A

✓q
1� �2

A � 1 + �2
A

◆
 GW =  GR + �EdGB (⇡Mf)�7/3

There are values of the spin for which the effect vanishes!

Actual GW150914 Constraints on GR Pillar Violations in Wave Generation

[Yunes, Yagi, Pretorius, ‘16]
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GW150914

Spectral Noises of Future Instruments



YunesExtreme Gravity Modeling Inferences 35

Future Constraints with Single Instruments

[Chamberlain & Yunes, to appear soon]
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Case Study: 
Massive Graviton

105 times better than 
current bounds!!
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Future Constraints with Multi-Wavelength Observations
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[Barausse, Yunes, Chamberlain, PRL ’16]

106 times better than 
current bounds!!

� = � 3

224
⌘2/5BCase Study:  

Dipole Radiation
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Conclusions
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Gravitational Waves Are Already 
Telling Us About Theoretical Physics  

(Lorentz violation, graviton mass, dipole 
emission, higher curvature action, 

screening mechanisms, no-hair theorem)

Gravitational Wave Tests Are Special Probes of Physics  
(extreme gravity, clean, localized, constraint maps)

Model-Independent Framework To Search For Anomalies In The Data 
Allows For Constraints On Deviations 

(parameterized post-Einsteinian and Bayesian model selection)

Modified Theories Must Pass A New High Bar 
(They must be consistent with LIGO’s 

observations of BHs and GWs)

If it bleeds,  
we can kill it!
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Thank You


