# Theoretical Physics Implications of the Advanced LIGO Gravitational Wave Observations

- Nicolas Yunes
- eXtreme Gravity Institute Montana State University

MiTP Workshop March 23rd 2017



## What is Montana?









## eXtreme Gravity Institute









Now accepting Applications for our Physics PhD Program!!









# eXtreme Matter meets eXtreme Gravity



Home SRSS

#### POST AN AD

| Conferences |  |
|-------------|--|
| Jobs        |  |
| News        |  |
| Codes       |  |

#### VIEW ADS

| Conferences |
|-------------|
| Jobs        |
| News        |
| Codes       |

#### CALENDARS

| Conference | 8 |
|------------|---|
| Jobs       |   |

#### INFO

| How To Post  |  |
|--------------|--|
| Mailing List |  |
| Contact      |  |
| FAQs         |  |

RESOURCES

**GRG Scientists** 

More info: external link Contact: ncornish[AT]montana.edu

Date: 2017-08-17 - 2017-08-19 Location: Bozeman, Montana, USA

#### eXtreme Matter meets eXtreme Gravity Workshop, Bozeman, Montana, USA

#### XGI Workshop First Announcement:

"eXtreme Matter meets eXtreme Gravity" August 17-19, Bozeman Montana

The extreme Gravity Institute at Montana State University will hold a workshop to discuss methods for constraining the properties of Neutron Stars and the dense-matter equation of state. Like previous XGI workshops, the format will emphasize discussion and exchange of ideas over formal presentations. Each session will be organized around a science question, with a moderator and two discussion leaders. Topics to be covered include gravitational-wave observations of Neutron Star – Neutron Star and Neutron Star – Black Hole binaries, X-ray observations by the NICER mission (set to launch very soon), theoretical calculations of the dense-matter equation of state, and numerical simulations of NS-NS and NS-BH mergers.

The meeting is being held immediately prior to the HEAD meeting in Sun Valley, and participants may choose to drive between the meetings, or simply head a little south of Bozeman to view the total eclipse on the 21st of August. Bozeman is a beautiful mountain town a one-hour drive from the North entrance of Yellowstone National Park. The surrounding area offers great opportunities for hiking, fishing, white water rafting, and mountain biking.

#### Share this:



### hyperspace@gu

P Search

Editor: Luciano Rezzolla

#### Previous Next

| Username | <b>:</b> |  |
|----------|----------|--|
|          |          |  |
| Password | :        |  |
| V Remen  | nber me  |  |
| Login    |          |  |

#### CONFERENCES

- ICRANet-Minsk workshop on high energy astrophysics, Minsk, Belarus
- Fifth Galileo-Xu Guangqi Meeting, Chengdu, China
- 15th Italian-Korean Symposium on Relativistic Astrophysics, Seoul, Korea
- Geometric Foundations of Gravity in Tartu, Estonia
- 3rd Karl Schwarzschild Meeting Gravity and the Gauge/Gravity Correspondence, Frankfurt, Germany

#### JOBS

- Assistant Lecturer in Gravitational Wave
   Astrophysics at Monash University, Australia
- Professor/Reader in Gravitational Wave Science at Portsmouth LIK







## Why is this important now?









## Why is this even more important in the near future?











## What do I do and what will this talk be about?



### What can we learn about gravity from precision gravitational wave observations?









# Roadmap



![](_page_7_Picture_2.jpeg)

## What is eXtreme Gravity & Gravitational Waves?

eXtreme Gravity: where gravity is (a) very strong, (b) non-linear (c) dynamical

Gravitational Waves (GWs): Wave-like perturbation of the grav. field.

**Generation of GWs:** Accelerating masses (t-variation in multipoles)

Propagation of GWs: Light speed, weakly interacting, 1/R decay.

**GW Spectrum:** Kepler 3rd Law:  $\frac{f}{2\pi} = \sqrt{\frac{m_{\text{tot}}}{r_{12}^3}}$ 

Example: Binary BH merger,  $E_{\rm rad} \sim 1$ 

Modeling Extreme Gravity Inferences

![](_page_8_Figure_9.jpeg)

$$\sim \frac{1}{m_{\rm tot}}, \quad E_{\rm rad} \sim \% \ m_{\rm tot} \quad \text{in about } 10^{79} \text{ gravitons}$$
  
 $10^{46} \ J \ \left(\frac{\epsilon}{1\%}\right) \ \left(\frac{M}{10M_{\odot}}\right) \sim 10^2 E_{\rm SN}$ 

![](_page_8_Picture_11.jpeg)

![](_page_8_Picture_12.jpeg)

![](_page_8_Picture_13.jpeg)

![](_page_8_Picture_14.jpeg)

# How are GW Probes of eXtreme Gravity Different?

#### **1. eXtreme Gravity:**

Sources: Compact Object Coalescence, SN, deformed NSs, etc.

**Processes:** Generation & Propagation of metric perturbation

Inferences

2. Clean: Absorption is negligible, lensing unimportant at low z, accretion disk and B fields unimportant during inspiral.
[Yunes, et al PRL ('11), Kocsis, et al PRD 84 ('11), Barausse, et al PRD 89 ('14)]

**3. Localized:** Point sources in spacetime

Modeling

Extreme Gravity

<u>Constraint Maps</u> [Yunes & Pretorius, PRD 81 ('10)]

![](_page_9_Picture_7.jpeg)

![](_page_9_Picture_8.jpeg)

![](_page_9_Picture_9.jpeg)

## What Physics Regime do GWs Probe?

![](_page_10_Figure_1.jpeg)

Inferences

Extreme Gravity

Modeling

![](_page_10_Figure_5.jpeg)

![](_page_10_Picture_6.jpeg)

![](_page_10_Picture_7.jpeg)

![](_page_10_Picture_8.jpeg)

# Extreme Gravity versus Strong Gravity

![](_page_11_Figure_1.jpeg)

Extreme Gravity

#### Inferences

![](_page_11_Picture_4.jpeg)

![](_page_11_Picture_5.jpeg)

![](_page_11_Picture_6.jpeg)

## What is interesting to constrain?

#### **Agnostic Approach**

Effective Field Theory

Broken Symmetries

Generic Anomalies

<u>Advantages:</u>

Generic properties of gravity PT Analytic calculations are "doable"

#### Disadvantages:

Hard to put it on a computer Regime of validity of EFT

### Theorists need to speak up and argue for what to search for

#### Extreme Gravity Modeling Inferences

### **Religious Approach**

Pick a theory and stick to it!

Eg. scalar-tensor theories, EA theory, EdGB gravity, Bigravity

Advantages:

You have the complete action You can put it on a computer

Disadvantages:

Non-generic approach

Hard to make theory pass all tests

![](_page_12_Picture_19.jpeg)

![](_page_12_Picture_20.jpeg)

![](_page_12_Picture_21.jpeg)

![](_page_12_Picture_22.jpeg)

# Main Difficulty of the Religious Approach: Catch-22

#### **Case Study: Scalar-Tensor Theories**

![](_page_13_Figure_2.jpeg)

[Damour & Esposito-Farese '92 - '98]

$$g_{*}^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi] + S_{E,mat}[\chi, e^{\beta\varphi^{2}}g_{\mu\nu}^{*}]$$

$$G_{\mu\nu}^{*} = \kappa T_{\mu\nu}^{*,tot}$$
Pass Solar System Constraints
$$weak \text{ field analysis } \varphi = \varphi_{\infty} + \alpha_{sc}\frac{m}{r}$$

$$\gamma_{ppN} - 1 = -\frac{2\beta^{2}\varphi_{\infty}^{2}}{1 + \beta^{2}\varphi_{\infty}^{2}}$$
(Shapiro time-defined to the example of t

![](_page_13_Picture_5.jpeg)

![](_page_13_Picture_6.jpeg)

![](_page_13_Figure_7.jpeg)

![](_page_13_Picture_8.jpeg)

## Inducing Strong Field Corrections

![](_page_14_Figure_1.jpeg)

#### Modeling Extreme Gravity Inferences

![](_page_14_Picture_4.jpeg)

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

![](_page_14_Picture_7.jpeg)

## **Cosmological Evolution and a Catch-22**

$$\gamma_{\rm ppN} - 1 = -\left(\frac{2\beta^2\varphi^2}{1+\beta^2\varphi^2}\right)_{\rm today} < 2.3 \times 10^{-10}$$

![](_page_15_Figure_2.jpeg)

**Cosmological Evolution allows massless Scalar-Tensor theories to pass** Solar System constraints if  $\beta < 0$  spontaneous scalarization is disallowed

-5But what is  $\varphi_{today}$  after cosmological evolution?

$$-\omega_{\rm eos})\varphi' = (1 - 3\omega_{\rm eos})\beta\varphi \longrightarrow \text{HO with } V_{\varphi} \sim \beta\varphi^2$$

[Damour & Nordvedt '93]

[Sampson et al '14, Anderson, Yunes, Barausse '16]

![](_page_15_Picture_9.jpeg)

![](_page_15_Picture_10.jpeg)

![](_page_15_Figure_11.jpeg)

![](_page_15_Picture_12.jpeg)

# Roadmap

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

# How do we extract signals from the noise?

![](_page_17_Figure_1.jpeg)

Extreme Gravity

#### Modeling

Inferences

![](_page_17_Picture_6.jpeg)

![](_page_17_Picture_7.jpeg)

## How do we build GW models?

![](_page_18_Picture_1.jpeg)

Extreme Gravity

Modeling

Inferences

![](_page_18_Figure_5.jpeg)

![](_page_18_Figure_6.jpeg)

![](_page_18_Picture_8.jpeg)

![](_page_18_Picture_9.jpeg)

![](_page_18_Picture_10.jpeg)

![](_page_18_Picture_11.jpeg)

![](_page_18_Picture_12.jpeg)

![](_page_19_Picture_0.jpeg)

r. H

## Generation

![](_page_19_Picture_3.jpeg)

# Model for the GW Observable during Inspiral (PN)

- I. Construct the Hamiltonian (ie, binding energy)
- II. Construct the RR (dissipative) force.  $\dot{E}_b = -\dot{E}_b$
- III. Determine propagating dof and its EOM  $h_i$
- IV. Construct the propagator & the dispersion rel

 $h_{\times}(t)$ distance to symmetric gravitational mass ratio the source wave

Modeling Inferences Extreme Gravity

$$E_{b} = -\frac{\mu m}{r} \left[ 1 + 1PN + \ldots + 3PN + \mathcal{O}\left(\frac{1}{c^{8}}\right) \right]$$
$$\frac{32}{5} \eta^{2} \left(\frac{v}{c}\right)^{10} \left[ 1 + 1PN + 1.5PN + \ldots + 3.5PN + \mathcal{O}\left(\frac{1}{c^{8}}\right) \right]$$
$$j = \frac{1}{r} \ddot{I}_{ij} \left[ 1 + \ldots + \mathcal{O}\left(\frac{1}{c^{8}}\right) \right]$$

lation 
$$E_g = p_g \to \omega = k$$

![](_page_20_Figure_9.jpeg)

Blanchet's Living Reviews

![](_page_20_Picture_11.jpeg)

![](_page_20_Picture_12.jpeg)

![](_page_20_Picture_13.jpeg)

![](_page_20_Picture_14.jpeg)

## How is the GW observable modified? Generation Example

#### **Case Study: Dipole Radiation**

Conservation laws disallow dipole radiation in GR, but not in mod gravity

Dipole radiation removes energy more effectively than quadrupole radiation

> **Dipole radiation forces binary to inspiral** faster and GWs to chirp faster

GW Phase is sensitive to rate of inspiral

$$\Psi_{\rm GW} = \dot{f} T_g^2 =$$

![](_page_21_Picture_7.jpeg)

Modeling Extreme Gravity

#### Inferences

 $E_h = -\mathcal{L} = -(\mathcal{L}_{GW} + \mathcal{L}_{\theta})$ 

 $\mathcal{L}_{\rm GW} \sim \left\langle \ddot{I}_{ij} \ddot{I}^{ij} \right\rangle \sim \left(\frac{v}{c}\right)^{10} \qquad \mathcal{L}_{\theta} \sim \left\langle \ddot{D}_{i} \ddot{D}^{i} \right\rangle \sim \left(\frac{v}{c}\right)^{8}$ 

$$\frac{E}{c} \int^{-1} \left(\frac{dE}{dt}\right) T_g^2 \sim \left(\pi M f\right)^{-5/3} + \beta_\theta \left(\pi M f\right)^{-7/3}$$

![](_page_21_Picture_13.jpeg)

![](_page_21_Picture_14.jpeg)

![](_page_21_Picture_15.jpeg)

![](_page_21_Picture_16.jpeg)

## What can we learn from GWs? Propagation Example

#### **Case Study: Massive Graviton**

Special Relativity tells us that for a propagating massive particle

GWs emitted close to merger travel faster than those emitted in the early inspiral.

GW Phase is sensitive to the GW frequency x GW travel time

Modeling

 $\Psi_{\rm GW}$ 

 $\frac{v_g^2}{c^2}$ 

Massive graviton effect accumulates with distance travelled.

[Will, PRD 1998, Will & Yunes, CQG 2004, Berti, Buonanno & Will, CQG 2005 Mirshekari, Yunes & Will, PRD 2012]

Inferences

Extreme Gravity

$$= 1 - \frac{m_g^2 c^4}{h^2 f^2} = 1 - \frac{c^2}{\lambda_g^2 f^2}$$

$$= fT_g = f \frac{D}{v_g} \sim \frac{fD}{c} + \frac{cD}{2\lambda_g^2 f}$$

![](_page_22_Picture_11.jpeg)

![](_page_22_Picture_12.jpeg)

## Propagation Effect Enhancement Conjecture

#### **Generic Argument**

Correction in GW prop.  $\delta \Psi_{\rm prop} =$ proportional to D<sub>L</sub>

Correction in GW gen.  $\delta \Psi_{\rm gen} =$ proportional to total mass

Ratio is then

$$\frac{\delta \Psi_{\text{prop}}}{\delta \Psi_{\text{gen}}} = \left(\frac{D_L}{\mathcal{M}}\right)^a (\pi \mathcal{M}f)^{(b-d)/3}$$

#### **Modifications in GW propagation dominate over** modifications in GW generation irrespective of PN order

![](_page_23_Figure_7.jpeg)

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

![](_page_23_Picture_10.jpeg)

## Parameterized post-Einsteinian Framework

- I. Parametrically deform the Hamiltonian.
- II. Parametrically deform the RR force.
- III. Deform waveform generation.
- IV. Parametrically deform g propagation.
- Result: To leading PN order and leading GR deformation

$$\tilde{h}(f) = \tilde{h}_{GR}(f) \left(1 + \alpha f^a\right) e^{i\beta f^b}$$

Extreme Gravity Modeling Inferences

$$A = A_{GR} + \delta A$$
  

$$\delta A_{H,RR} = \bar{\alpha}_{H,RR} v^{\bar{a}_{H,RR}}$$

$$h = F_+h_+ + F_\times h_\times + F_s h_s + \dots$$

$$E_g^2 = p_g^2 c^4 + \tilde{\alpha} p_g^{\tilde{\alpha}} \bigg|$$

Yunes & Pretorius, PRD 2009 Mirshekari, Yunes & Will, PRD 2012 Chatziioannou, Yunes & Cornish, PRD 2012

![](_page_24_Picture_13.jpeg)

![](_page_24_Picture_14.jpeg)

![](_page_24_Picture_15.jpeg)

![](_page_24_Picture_16.jpeg)

![](_page_25_Figure_0.jpeg)

## Test Principles, not Theories

#### **The parameterized post-Einsteinian Framework**

 $= \tilde{h}_{GR}($ h(f)

| Theoretical Effect              | Theoretical Mechanism                                  | Theories                                     | ppE $b$ | Order   | Mapping                    |
|---------------------------------|--------------------------------------------------------|----------------------------------------------|---------|---------|----------------------------|
| Sealar Dinelar Rediction        | Scalar Monopole Field Activation                       | EdGB [140, 142, 149, 150]                    |         | -1PN    | $\beta_{\rm EdGB}$ [140]   |
| Scalar Dipolar Radiation        | BH Hair Growth                                         | Scalar-Tensor Theories [59, 151]             | -7      | -1PN    | $\beta_{\rm ST}$ [59, 151] |
| Anomalous Acceleration          | Extra Dimension Mass Leakage                           | RS-II Braneworld [152, 153]                  | -13     | -4PN    | $\beta_{\rm ED}$ [141]     |
| Anomalous Acceleration          | Time-Variation of $G$ Phenomenological [137, 154] $-1$ |                                              | -13     | -4PN    | $eta_{\dot{G}}~[137]$      |
| Scalar Quadrupolar Radiation    | Scalar Dipole Field Activation                         |                                              |         |         |                            |
| Scalar Dipole Force             | due to                                                 | dCS [140, 155]                               | -1      | +2PN    | $\beta_{ m dCS}$ [146]     |
| Quadrupole Moment Deformation   | Gravitational Parity Violation                         |                                              |         |         |                            |
| Scalar/Vector Dipolar Radiation | Vector Field Activation                                |                                              |         | _1DN    | a(-1) [110]                |
| Modified Quadrupolar Radiation  | due to                                                 | EA [109, 110], Khronometric [111, 112]       | _/<br>_ | ODN ODN | $\beta_{E} ~ [113]$        |
|                                 | Lorentz Violation                                      |                                              | -0      | OFN     | $\rho_{E}$ [113]           |
|                                 |                                                        | Massive Gravity [156–159]                    | -3      | +1PN    |                            |
|                                 |                                                        | Double Special Relativity [160–163]          | +6      | +5.5PN  |                            |
|                                 |                                                        | Extra Dim. [164], Horava-Lifshitz [165–167], | +9      | +7PN    |                            |
| Modified Dispersion Relation    | GW Propagation/Kinematics                              | gravitational SME $(d = 4)$ [179]            | +3      | +4PN    | $eta_{	ext{MDR}}$          |
|                                 |                                                        | gravitational SME $(d = 5)$ [179]            | +6      | +5.5PN  | [145,  156]                |
|                                 |                                                        | gravitational SME $(d = 6)$ [179]            | +9      | +7PN    |                            |
|                                 |                                                        | Multifractional Spacetime [168–170]          | 3–6     | 4-5.5PN |                            |
|                                 | -                                                      |                                              | -       | -       |                            |

Inferences

Modeling

Extreme Gravity

[Yunes & Pretorius, PRD 2009]

$$(f)\left(1+\alpha f^a\right)e^{i\beta f^b}$$

[<u>MSU</u>: Cornish et al PRD 84 ('11), Sampson et al PRD 87 ('13), Sampson, et al PRD 88 ('13), Sampson et al PRD 89 ('14), Nikhef: Del Pozzo et al PRD 83 ('11), Li et al PRD 85 ('12), Agathos et al PRD 89 ('14), Del Pozzo et al CQG ('14).]

![](_page_26_Picture_8.jpeg)

![](_page_26_Picture_9.jpeg)

![](_page_26_Picture_10.jpeg)

# Roadmap

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

### GW Constraints on Modified Generation

![](_page_28_Figure_1.jpeg)

[Yunes, Yagi, Pretorius, PRD '16]

![](_page_28_Picture_3.jpeg)

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_5.jpeg)

![](_page_28_Picture_6.jpeg)

# But what about the higher PN order terms?

frac.

$$\Phi_{\mathrm{I}}^{\mathrm{BD}}(f) = \Phi_{\mathrm{I}}^{\mathrm{GR}}(f) + \beta_{\mathrm{BD}} \left(\pi \mathcal{M}f\right)^{b_{\mathrm{BD}}} \left[1 + \sum_{i=2}^{5} \delta \phi_{i}^{\mathrm{BD}}(\eta) \left(\pi \mathcal{M}f\right)^{i/3}\right]$$

Caveat: These constraints are "conservative." We could do better if we knew how the merger was modified and we included this in the analysis.

#### Modeling Extreme Gravity Inferences

![](_page_29_Figure_5.jpeg)

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

![](_page_29_Picture_8.jpeg)

## GW Constraints on Modified Propagation

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_2.jpeg)

[Yunes, Yagi, Pretorius, PRD '16]

![](_page_30_Picture_4.jpeg)

![](_page_30_Picture_5.jpeg)

![](_page_30_Picture_6.jpeg)

# Theory Implications of GW Observations

Inferences

Extreme Gravity Modeling

| Theoretical Mechanism   | CP Billor  | DN | $ \beta $            |                      | Example Theory Constraints        |                              |                     |                         |
|-------------------------|------------|----|----------------------|----------------------|-----------------------------------|------------------------------|---------------------|-------------------------|
| Theoretical Mechanism   | Git Fillar | IN | GW150914             | GW151226             | Repr. Parameters                  | GW150914                     | GW151226            | Current Bounds          |
| Scalar Field Activation | SED        | _1 | $1.6 \times 10^{-4}$ | $1.1 \times 10^{-5}$ | $\sqrt{ \alpha_{\rm EdGB} }$ [km] |                              |                     | $10^7$ [56], 2 [57–59]  |
| Scalar Field Activation | 5151       | -1 | 1.6 × 10             | 4.4 × 10             | $ \dot{\phi} $ [1/sec]            | —                            |                     | $10^{-6}$ [60]          |
| Scalar Field Activation | SEP, PI    | +2 | $1.3 	imes 10^1$     | 4.1                  | $\sqrt{ lpha_{ m dCS} }$ [km]     | —                            |                     | $10^8$ [61, 62]         |
| Vector Field Activation | SEP LI     | 0  | 7.2 × 10-3           | $9.4 \times 10^{-3}$ | $(c_{+}, c_{-})$                  | (0.9, 2.1)                   | (0.8, 1.1)          | (0.03, 0.003) [63, 64]  |
| vector Field Activation | SEF, LI    | 0  | 1.2 × 10             | 5.4 × 10             | $(eta_{ m KG},\lambda_{ m KG})$   | (0.42, -)                    | (0.40, -)           | (0.005, 0.1) [63, 64]   |
| Extra Dimensions        | 4D         | -4 | $9.1 	imes 10^{-9}$  | $9.1\times10^{-11}$  | $\ell \; [\mu { m m}]$            | $\mathbf{5.4 	imes 10^{10}}$ | $2.0 	imes 10^9$    | $10 - 10^3 \ [65 - 69]$ |
| Time-Varying $G$        | SEP        | -4 | $9.1 	imes 10^{-9}$  | $9.1\times10^{-11}$  | $ \dot{G} ~[10^{-12}/{ m yr}]$    | $5.4	imes10^{18}$            | $1.7 	imes 10^{17}$ | 0.1-1 [70-74]           |

[Yunes, Yagi, Pretorius, PRD '16]

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

![](_page_31_Picture_5.jpeg)

## The Problem of Degeneracies

 $\Psi_{\rm GW} = \Psi_{\rm G}$ 

### $\beta_{\rm EdGB} \sim \zeta_{\rm EdGB} \left( m_1^2 s_2^2 - m_2^2 s_2^2 \right)$

| Theoretical Mechanism        | CR Biller               | $\mathbf{PN}$ | $ \beta $                    | Example Theory Constraints      |                          |                                                         |  |
|------------------------------|-------------------------|---------------|------------------------------|---------------------------------|--------------------------|---------------------------------------------------------|--|
| Theoretical Mechanism        | GR Fillar               |               | <b>GW150914</b>              | Repr. Parameters                | GW150914                 | Current Bounds                                          |  |
|                              | SEP                     | -1            | $1.6 	imes 10^{-4}$          | $\sqrt{ lpha_{ m EdGB} }$ [km]  |                          | $10^7$ [46], 2 [47–49]                                  |  |
| Scalar Field Activation      | SEP, No BH Hair         | -1            | $1.6 	imes \mathbf{10^{-4}}$ | $ \dot{\phi} ~[1/	ext{sec}]$    |                          | $10^{-6}$ [50]                                          |  |
|                              | SEP, Parity Invariance  | +2            | $1.3 	imes 10^1$             | $\sqrt{ lpha_{ m CS} }~[ m km]$ |                          | $10^8 \ [51, \ 52]$                                     |  |
| Vector Field Activation      | SEP, Lorentz Invariance | 0             | $7.2 	imes 10^{-3}$          | $(c_{+}, c_{-})$                | $({f 0.9, 2.1})$         | (0.03, 0.003) [53, 54]                                  |  |
| Extra Dimension Mass Leakage | 4D spacetime            | -4            | $9.1 	imes 10^{-9}$          | $\ell \; [\mu { m m}]$          | $\bf 5.4 \times 10^{10}$ | $10 	extrm{}10^3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |  |
| Time-Varying $G$             | SEP                     | -4            | $9.1 	imes 10^{-9}$          | $ \dot{G}  [10^{-12}/yr]$       | $\bf 5.4 \times 10^{18}$ | 0.1 - 1 [60 - 64]                                       |  |

$$s_{\mathrm{R}}^{2} + \beta_{\mathrm{EdGB}} \left(\pi \mathcal{M}f\right)^{-7/3}$$
$$s_{1}^{2} \qquad s_{A} = \frac{2}{\chi_{A}^{2}} \left(\sqrt{1 - \chi_{A}^{2}} - 1 + \chi_{A}^{2}\right)$$

There are values of the spin for which the effect vanishes!

Actual GW150914 Constraints on GR Pillar Violations in Wave Generation

[Yunes, Yagi, Pretorius, '16]

![](_page_32_Picture_10.jpeg)

![](_page_32_Picture_11.jpeg)

![](_page_32_Picture_15.jpeg)

## Spectral Noises of Future Instruments

![](_page_33_Figure_1.jpeg)

#### Extreme Gravity Modeling

#### Inferences

![](_page_33_Picture_4.jpeg)

![](_page_33_Picture_5.jpeg)

## Future Constraints with Single Instruments

![](_page_34_Figure_1.jpeg)

$$\beta = \pi^2 \frac{D \mathcal{M}_z}{1+z} m_g^2$$

Extreme Gravity

Modeling Inferences

| Current Bound | <br>      | Ι     | 1    | 1 | 1 | Τ |
|---------------|-----------|-------|------|---|---|---|
|               | Current I | Bound | <br> |   |   |   |

Instrument

[Chamberlain & Yunes, to appear soon]

![](_page_34_Picture_8.jpeg)

![](_page_34_Picture_9.jpeg)

![](_page_34_Picture_10.jpeg)

## Future Constraints with Multi-Wavelength Observations

#### **Case Study: Dipole Radiation**

 $10^{-2}$ A0620-00 LMXB  $10^{-3}$ 10<sup>-4</sup> constraint on IBI  $10^{-5}$  $10^{-6}$ 10<sup>-7</sup>  $10^{-8}$ 100 100 100 AL CO Cat. D. S.

**10<sup>6</sup> times better than** current bounds!!

![](_page_35_Figure_4.jpeg)

[Barausse, Yunes, Chamberlain, PRL '16]

![](_page_35_Picture_6.jpeg)

![](_page_35_Picture_7.jpeg)

Yunes

![](_page_35_Picture_8.jpeg)

## Conclusions

### **Gravitational Wave Tests Are Special Probes of Physics** (extreme gravity, clean, localized, constraint maps)

#### **Model-Independent Framework To Search For Anomalies In The Data Allows For Constraints On Deviations** (parameterized post-Einsteinian and Bayesian model selection)

**Gravitational Waves Are Already Telling Us About Theoretical Physics** (Lorentz violation, graviton mass, dipole emission, higher curvature action, screening mechanisms, no-hair theorem)

#### **Modified Theories Must Pass A New High Bar**

(They must be consistent with LIGO's observations of BHs and GWs)

![](_page_36_Picture_9.jpeg)

![](_page_36_Picture_10.jpeg)

![](_page_36_Picture_11.jpeg)

![](_page_36_Picture_12.jpeg)

![](_page_36_Picture_13.jpeg)

# Thank You

![](_page_37_Picture_1.jpeg)

![](_page_37_Picture_2.jpeg)

38

![](_page_37_Picture_5.jpeg)