Speaker
Description
A hydrodynamic approach to the transport of heavy quarks in the quark-gluon plasma (QGP) is presented. We exploit the conservation of the number of heavy quark-antiquark pairs within the evolution of the plasma to construct causal second-order hydrodynamic equations of motion. The hydrodynamic transport coefficients associated to the heavy-quark diffusion current are then compared with the momentum-diffusion coefficients obtained in the standard Fokker-Planck formalism. The purpose of this work is to provide further insights on the level of thermalization of charm and bottom quarks inside the expanding QGP with a novel approach, which consists in investigating the relation between hydrodynamics and transport theory and determining if their matching is able to capture the complexity of the heavy-quark in-medium dynamics.
Topic | Heavy Ion Physics |
---|