Speaker
Dr
Andreas von Manteuffel
(Michigan State University)
Description
The calculation of syzygies for the generation of linear relations between Feynman integrals can be challenging for state-of-the-art calculations in quantum chromodynamics. I will discuss how basic linear algebra methods can be employed to efficiently compute the relevant syzygies for different applications: relations in the Baikov representation which avoid squared propagators (“dots”) and relations in the Lee-Pomeransky representation which avoid numerators. In the latter case I will discuss applications for relations involving also higher order differential operators.
Primary author
Dr
Andreas von Manteuffel
(Michigan State University)