Speaker
Yvonne Stöttinger
(Universität Mainz)
Description
The electromagnetic form factors of light nuclei provide a sensitive test of our understanding of nuclei. The deuteron in particular, as the only bound two-nucleon system, is a fundamental system that has received extensive attention in the past, by both theory and experiment. Because the deuteron has spin one, three form factors are needed to fully describe the electromagnetic structure of the deuteron. Especially the deuteron charge radius is a favourite observable to compare experiment and calculation.
In 2014, an extensive measurement campaign has been performed at MAMI (Mainz Microtron) to determine the deuteron charge radius using elastic electron scattering - with the aim to halve the error compared to previous such experiments. The experiment took place at the 3-spectrometer facility of the A1-collaboration. Cross section measurements of the elastic electron-deuteron scattering have been performed for 180 different kinematic settings in the low momentum transfer region. From these, the charge form factor can precisely be determined. Fitting the form factor with a sum of gaussians fit function, the radius can then be determined from the slope at zero momentum transfer. The determined radius could then be used as a counterweight to the value obtained from advanced atomic Lamb shift measurements, thus providing additional insight to the proton radius puzzle.
Primary author
Yvonne Stöttinger
(Universität Mainz)