Speaker
Dr
Mikhail Gorshteyn
(JGU)
Description
Measuring the parameters of the Standard Model (SM) at low energies with high precision allows one to discover physics beyond the SM (BSM) if a deviation from the SM prediction is observed experimentally, or constrain the BSM contributions if no such deviation is seen. The precision of modern experiments makes them sensitive to heavy New Physics at scales of several tens of TeV, making them complementary to direct searches at colliders. To interpret such experiments in terms of New Physics, the SM radiative corrections, including those depending on the hadronic structure, have to be taken into account. In the context of the parity-violating electron scattering program at Mainz and Jefferson Lab, and $\beta$-decay of free and bound neutrons, I review the current status of the theory of electroweak box corrections that involve an exchange of a heavy $W^\pm$ or $Z$-boson and a photon.
Primary author
Dr
Mikhail Gorshteyn
(JGU)