Speaker
Dr
Giuseppe Battistoni
(INFN)
Description
Particle therapy uses proton or 12-C beams for the treatment of deep-seated solid tumors. Due to the features of energy deposition of charged particles a small amount of dose is released to the healthy tissue in the beam entrance region, while the maximum of the dose is released to the tumor at the end of the beam range, in the Bragg peak region. Dose deposition is dominated by electromagnetic interactions but nuclear interactions between beam and patient tissues inducing fragmentation processes must be carefully taken into account.
In proton treatment the target fragmentation produces low energy, short range fragments along all the beam range. In 12-C treatments the main concern are long range fragments due to projectile fragmentation that release dose in the healthy tissue after the tumor.
The FOOT experiment (FragmentatiOn Of Target) of INFN (Istituto Nazionale di Fisica Nucleare) is a new project designed to study these processes. Target (16-O,12-C) fragmentation induced by 150-250 MeV proton beam will be studied via inverse kinematic approach, where 16-O and 12-C beams, in the 150-200 AMeV energy range, collide on graphite and hydrocarbons target to allow the extraction of the cross section on Hydrogen. This configuration explores also the projectile fragmentation of these beams.
The detector includes a magnetic spectrometer based on silicon pixel detectors, a scintillating crystal calorimeter with TOF capabilities, able to stop the heavier fragments produced, and a ΔE detector to achieve the needed energy resolution and particle identification.
The detector, the physical program and the timetable of the experiment will be presented
Primary author
Dr
Giuseppe Battistoni
(INFN)