Speaker
Description
In particle therapy (PT) nuclear interactions of the beam with the patient’s body causes fragmentation of both the projectile and target nuclei. In treatments with protons, target fragmentation generates short range secondary particles, that may deposit a non-negligible dose in the entry channel. On the other hand, in treatments with ions, such as C or O, the main concern is long range fragments produced by projectile fragmentation, that release the dose in the healthy tissues. Fragmentation processes need to be taken into account when planning a PT treatment to keep the dose accuracy within the recommended 3\% of tolerance level. The evaluation of the impact that these processes have on the released dose is very limited from the lack of experimental data, especially for the fragmentation cross sections.The FOOT (FragmentatiOn Of Target) collaboration designed an experiment tomeasure the double differential cross section of nuclear fragmentation processes relevant for charged PT. The experiment is meant to investigate target fragmentation (mainly 12𝐶 and 16𝑂 nuclei) induced by 50÷200 MeV proton beams. The nuclear fragmentation cross section on hydrogen will be studied via an inverse kinematic approach, where 12𝐶 and 16𝑂 therapeutic beams collide on graphite and hydrocarbon targets. Increasing the beam energy to 400÷500 MeV/u also the projectile fragmentation of these beams, impinging on targets of interest for PT, will be explored. \In this contribution, an overview of the FOOT experiment, including the detector design and the expected performances will be discussed. In addition preliminary values of charge-changing cross-sections, obtained from a first test experiment with 400 MeV/u 16𝑂 impinging on a carbon target with a partial setup, will be presented.
Topic | Applications |
---|