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• How to link the general calculation with experiment?
• A particular counting scheme is used (not a systematical expansion) 
using ChPT-p counting and large-Nc counting:

• large-Nc enhanced pieces seem dominant: important 1/Nc 
corrections (just started)
• ChPT enhanced pieces less dominant but role of pions polarizability 
may be important (cross-check)

• Double counting needs to be avoided: hadron exchanges versus    
quark-loops
• New general approaches: Dispersion Relations, CχQM, lattice
• Role of offshellness effects (Ballpark and η-η’ suggest ~20% 
enhancement)
• MV discussion of the “external vertex”
• Role of excited vector states (beyond VMD): syst. improve of models

Open questions from the theory side

(in my opinion)
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Dissection of the HLBL contribution

q1q1+q2

q2

q2 q1

q1

q1+q2
q2 q1

q1+q2

q1+q2

q2

Use data from
the Transition Form Factor

aLbL;P
µ = �e6

Z
d4q1
(2⇡)4

Z
d4q2
(2⇡)4

1

q21q
2
2(q1 + q2)2[(p+ q1)2 �m2][(p� q2)2 �m2]

⇥
 
FP⇤�⇤�⇤(q22 , q

2
1 , (q1 + q2)2)FP⇤�⇤�⇤(q22 , q

2
2 , 0)

q22 �M2
P

T1(q1, q2; p)

+
FP⇤�⇤�⇤((q1 + q2)2, q21 , q

2
2)FP⇤�⇤�⇤((q1 + q2)2, (q1 + q2)2, 0)

(q1 + q2)2 �M2
P

T2(q1, q2; p)

!

11Pere Masjuan Hadronic Contributions to g-2 Mainz, April 2014



• Extraction of meson TFF and HLBL

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy 
Constants, constrain hadronic model and estimation of π0-HLBL

Dissection of the HLBL contribution
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Dissection of the HLBL contribution

Use data from
the Transition Form Factor

for numerical integral
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Use hadronic models 
constrained with 

chiral and large-Nc arguments
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Dissection of the HLBL contribution
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Use hadronic models 
constrained with 

chiral and large-Nc arguments

FAðtÞ ¼ FAð0Þ
M2

A

M2
A $ t

; (47)

with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.

C. Transition form factor

The pion-photon transition form factor !0 ! ""% has
been subjected to vigorous discussion in recent years.
Firstly, its value at the origin is fixed by the chiral anomaly,

Fð0Þ ¼ 1

4!2f!
; (48)

while its asymptotic behavior is given by

FðQ2Þ ! 6f!
NcQ

2 þ ' ' ' (49)

A simple model fulfilling both conditions is

FðQ2Þ ¼ 1

4!2f!

m2
#

m2
# þQ2 ; (50)

provided one has the relation

m2
# ¼ 24!2f2!

Nc
; (51)

which givesm# ¼ 823 MeV for f! ¼ 92:6 MeV or m# ¼
770 MeV for f! ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], # and #0, we get, after
imposing the anomaly and large-Q2 behavior,

FðQ2Þ ¼ 1

4!2f!

m2
#m

2
#0 þ 24f2!!

2Q2=Nc

ðm2
# þQ2Þðm2

#0 þQ2Þ : (52)

The result is shown in Fig. 5, usingm# ¼ 0:775 GeV,m0
# ¼

1:465 GeV, !# ¼ 0:150 GeV, and !0
# ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the #00). This introduces a new
parameter that can be fixed by the derivative of the form
factor at the origin, the parameter a! [13]:
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where the parameter b can be obtained through a matching
procedure to the low-energy expansion of FðQ2Þ,
i.e., b ¼ m2
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þ 1
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þ 1
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Þ. Given m! ¼

0:135 GeV, m#, m0
#, m00

# ¼ 1:720ð20Þ GeV, and a! ¼
0:032ð4Þ, we obtain b ¼ 5:82ð18Þ.
Figure 3 of Ref. [13] shows how the half-width rule

provides a good estimate of the systematic error on the
determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].

D. Gravitational form factor

The gravitational quark form factors of the pion [65],"1

and "2, are defined through the matrix element of the
quark part of the energy-momentum tensor in the one-
pion state:

h!bðp0Þj"$%ð0Þj!aðpÞi ¼ 1

2
&ab½ðg$%q2 $ q$q%Þ"1ðq2Þ

þ 4P$P%"2ðq2Þ); (54)

where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 $ p, and a, b are the isospin

indices. The gravitational form factors satisfy the low-energy
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FIG. 5 (color online). Band: the pion-photon transition form
factor of Eq. (52). Points: various experimental data [61–64].
The horizontal line represents the theoretic asymptotic value
of 2f!.
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with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.

C. Transition form factor
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been subjected to vigorous discussion in recent years.
Firstly, its value at the origin is fixed by the chiral anomaly,
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provided one has the relation
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# ¼ 24!2f2!
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; (51)

which givesm# ¼ 823 MeV for f! ¼ 92:6 MeV or m# ¼
770 MeV for f! ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], # and #0, we get, after
imposing the anomaly and large-Q2 behavior,
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The result is shown in Fig. 5, usingm# ¼ 0:775 GeV,m0
# ¼

1:465 GeV, !# ¼ 0:150 GeV, and !0
# ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the #00). This introduces a new
parameter that can be fixed by the derivative of the form
factor at the origin, the parameter a! [13]:
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Þ. Given m! ¼

0:135 GeV, m#, m0
#, m00

# ¼ 1:720ð20Þ GeV, and a! ¼
0:032ð4Þ, we obtain b ¼ 5:82ð18Þ.
Figure 3 of Ref. [13] shows how the half-width rule

provides a good estimate of the systematic error on the
determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].
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and "2, are defined through the matrix element of the
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pion state:
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where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 $ p, and a, b are the isospin
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η and η0 transition form factors from rational approximants
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The η and η0 transition form factors in the spacelike region are analyzed at low and intermediate energies
in a model-independent way through the use of rational approximants. The slope and curvature parameters
of the form factors as well as their values at zero and infinity are extracted from experimental data. The
impact of these results on the mixing parameters of the η-η0 system and the pseudoscalar-exchange
contributions to the hadronic light-by-light scattering part of the anomalous magnetic moment aμ are also
discussed.

DOI: 10.1103/PhysRevD.89.034014 PACS numbers: 12.38.-t, 12.38.Lg, 12.39.Fe

I. INTRODUCTION

The pseudoscalar transition form factors (TFFs)
γ!γ → P, where P ¼ π0; η; η0 or ηc, have attracted a lot
of attention recently, both from the experimental and
theoretical sides, since the release of the BABAR data on
the π0-TFF in 2009 [1]. The TFF describes the effect of the
strong interaction on the γ!γ! → P transition and is
represented by a function FPγ!γ! ðq21; q22Þ of the photon
virtualities. Measuring both virtualities from the two-
photon-fusion reaction eþe− → eþe−P is still an exper-
imental challenge, so the common practice is to extract the
TFF when one of the outgoing leptons is tagged and the
other is not, that is, the single-tag method. The tagged
lepton emits a highly off-shell photon with the momentum
transfer q21 ≡−Q2 and is detected, while the other,
untagged, is scattered at a small angle and its momentum
transfer q22 is near zero. The form factor extracted from the
single-tag experiment is then a function of one of the
virtualities: FPγ!γðQ2Þ≡ FPγ!γ!ð−Q2; 0Þ.
At low-momentum transfer, the TFF can be described by

the expansion

FPγ!γðQ2Þ ¼ FPγγð0Þ
!
1 − bP

Q2

m2
P
þ cP

Q4

m4
P
þ & & &

"
; (1)

where FPγγð0Þ is the normalization, the parameters bP and
cP are the slope (related to the mean square radius of the
meson by bP=m2

P ¼ hr2i=6) and the curvature, respec-
tively, andmP is the pseudoscalar meson mass. FPγγð0Þ can
be obtained either from the measured two-photon partial
width of the meson P,

jFPγγð0Þj2 ¼
64π

ð4παÞ2
ΓðP → γγÞ

m3
P

; (2)

or, in the case of π0, η and η0, from the prediction of the
axial anomaly in the chiral and large-Nc limits of QCD. For
instance, Fπ0γγð0Þ ¼ 1=ð4π2FπÞ, where Fπ ≃ 92 MeV is
the pion decay constant. The corresponding predictions for
the η and η0 are discussed below. Concerning the slope
parameter, chiral perturbation theory (ChPT) predicts [2,3]
bη ¼ 0.51 and bη0 ¼ 1.47 for sin θP ¼ −1=3 [4], being θP
the η-η0 mixing angle in the octet-singlet basis defined at
lowest order. Other theoretical predictions are [4] bη ¼
0.53 and bη0 ¼ 1.33, from vector meson dominance
(VMD); bη ¼ 0.51 and bη0 ¼ 1.30, from constituent-quark
loops; bη ¼ 0.36 and bη0 ¼ 2.11, from the Brodsky-Lepage
interpolation formula [5]; and bη ¼ 0.521ð2Þ and
bη0 ¼ 1.323ð4Þ, from resonance chiral theory [6]. More
recently, the values bη ¼ 0.61þ0.07

−0.03 and bη0 ¼ 1.45þ0.17
−0.12 have

been obtained from a dispersive analysis for η → γγ⋆ [7].
Experimental determinations of these parameters are usu-
ally obtained after a fit to data using a normalized, single-
pole term with an associated mass ΛP, i.e.,

FPγ!γðQ2Þ ¼
FPγγð0Þ

1þQ2=Λ2
P
: (3)

At large-momentum transfer, the TFF can be calculated
in the asymptotic Q2 → ∞ limit at leading twist as a
convolution of a perturbative hard scattering amplitude
THðγγ! → qq̄Þ and a gauge-invariant meson distribution
amplitude which incorporates the nonperturbative dynam-
ics of the QCD bound state [8].
While the low- and large-momentum transfer regions are

in principle well described by ChPT and perturbative QCD
(pQCD), respectively, it would be highly desirable to have a
model-independent description of the TFFs in the whole
energy range. Unfortunately, such a description is still
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Fit to Space-like data: CELLO’91, CLEO’98, BABAR’09 and Belle’12
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Figure 1. ⇡0 (left upper panel), ⌘ (right upper panel), and ⌘0 (lower panel) TFFs. Green-dot-dashed lines show
our best PL

1 (Q2) fit, and black-solid lines show our best PN
N(Q2) fit. Black-dashed lines display the extrapolation of

the PN
N(Q2) at Q2 = 0 and Q2 ! 1. Experimental data are from CELLO (red circles), CLEO (purple triangles),

and BABAR (orange squares) Colls. [8]. The ⇡0 figure contains also data from BELLE (blue diamonds) [9]; and
the ⌘0 figure data from L3 (blue diamonds) [10].

Table 1. ⇡0, ⌘, and ⌘0 slope bP, curvature cP, asymptotic limit, and contribution to HLBL.

bP cP limQ2!1 Q2FP�⇤�(Q2) aHLBL;P
µ

⇡0 0.0324(22) 1.06(27) · 10�3 2 f⇡ 6.49(56) · 10�10

⌘ 0.60(7) 0.37(12) 0.160(24)GeV 1.25(15) · 10�10

⌘0 1.30(17) 1.72(58) 0.255(4)GeV 1.27(19) · 10�10

and obtain, in such a way, the derivatives of the FP�⇤�(Q2) at the origin of energies in a simple,
systematic and model-independent way [5, 6].

Since the analytic properties of TFFs are not known, the kind of PA sequence to be used is not
determine in advance. We consider two di↵erent sequences and the comparison among them should
reassess our results. The first one is a PL

1 (Q2) sequence inspired by the success of the simple vector
meson dominance ansatz [5], and the second one is a PN

N(Q2) sequence which satisfy the pQCD
constrains Q2FP��⇤ (Q2) ⇠ constant. After combining both sequence’s results, slope and curvature
results are shown in Table 1, where limQ2!1 Q2FP�⇤�(Q2) from the PN

N(Q2) is also shown.
The low-energy parameters obtain with this method can be used to constrain hadronic models with

resonances used to account for the hadronic light-by-light scattering contribution part (HLBL) of the

may be found in Refs. [1–4], and also the recent mea-
surement of the !!0!"" decay width by the PrimEx

Collaboration [43].
The form factor for real photons is related to the

!0 ! "" decay width:

F2
!0""

ðq21 ¼ 0; q22 ¼ 0Þ ¼ 4

!#2m3
!
!!0!""; (5)

with # ¼ #em ¼ 1=137:0356.
The experimental world average collected in the PDG

tables [11] is !PDG
!0!""

¼ 7:74$ 0:48 eV, although we

use here the PrimEx Collaboration result [43] that
has significantly improved the accuracy using a
Primakoff effect experiment at JLab, reporting the value
!!0!"" ¼ 7:82$ 0:14$ 0:17 eV.

A. Fits with the rational approximants

The fits with the PL
1 sequence to the spacelike data

points in Refs. [1–4] determine those ak coefficients that
best interpolate them. As always, when fitting experimen-
tal data, one should find a compromise between the
increase of fit errors and decrease of systematic ones
when increasing the order L of the PL

1 . Figure 1 shows
the experimental data obtained by CELLO (gray squares),2

CLEO (red diamonds), BABAR (blue circles), and Belle
(brown triangles), together with the pQCD prediction
(horizontal black dashed line). The red curve in Fig. 1 is
our best approximant, the P5

1.
In Fig. 2 we show the results for the prediction of the

slope and curvature parameters a! and b! with the PL
1 up

to L ¼ 5. Approximants with L > 5 have the new coeffi-
cients compatible with zero and then do not introduce new
information with respect to P5

1. The internal errors shown
in Fig. 2 are only statistical; the external ones are a qua-
dratic combination of statistical and systematic errors, the

latter determined in the previous section. For completeness
we also ascribe a 45% systematic error to the PDG slope
value.3 The curvature parameters have never been mea-
sured, so for ease of comparison we expand the VMD fit
used by the CELLO Collaboration up to that order with the
corresponding systematic error.
As expected from the models studied, we see in these

figures a nice convergence pattern for both a! and b!.
The PA P5

1 yields

a! ¼ 0:0340ð35Þstatð19Þsys; (6)

and

b! ¼ 1:20ð28Þstatð25Þsys % 10&3; (7)

with a $2=d:o:f: ¼ 0:80, where the systematic error is
estimated from the previous section (5.6% for a! and
21% for b!). We also extract the position of the PA pole
sp ¼ aL=aLþ1. This ratio is shown in Fig. 3, together with
a band corresponding to the physical value M% $ !%=2,
where M% ¼ 0:7755 GeV and !% ¼ 0:155 GeV is
believed to be the dominant resonance contribution. For

P01 P11 P21 P31 P41 P51 PDG

0.01

0.02

0.03

0.04

0.05

a

P01 P11 P21 P31 P41 P51 CELLO

0.0

0.5

1.0

1.5

2.0

b
10

3

FIG. 2 (color online). a! (left) and b!(right) predictions with the P
L
1 up to L ¼ 5. The internal band is the statistical error from the fit

and the external one is the combination of statistical and systematic errors determined in the previous section.
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FIG. 3 (color online). Position of the pole
ffiffiffiffiffi
sp

p
for the different

PL
1 . For comparison, we also show (gray band) the range

M% $ !%=2 corresponding to the physical %-meson value.

2CELLO data points Di are extracted from Ref. [1] using the

following normalization: Di ¼ ð 64!Ni

ð4!#Þ2m3
!
Þ1=2, with the Ni ¼

F2ðQ2
i Þm3

!

64! provided in that reference and # ¼ 1=137:036.

3Again, this systematic error is obtained by comparing the
VMD result with the exact ones in Tables I, IV, and V.
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latter determined in the previous section. For completeness
we also ascribe a 45% systematic error to the PDG slope
value.3 The curvature parameters have never been mea-
sured, so for ease of comparison we expand the VMD fit
used by the CELLO Collaboration up to that order with the
corresponding systematic error.
As expected from the models studied, we see in these

figures a nice convergence pattern for both a! and b!.
The PA P5

1 yields

a! ¼ 0:0340ð35Þstatð19Þsys; (6)

and

b! ¼ 1:20ð28Þstatð25Þsys % 10&3; (7)

with a $2=d:o:f: ¼ 0:80, where the systematic error is
estimated from the previous section (5.6% for a! and
21% for b!). We also extract the position of the PA pole
sp ¼ aL=aLþ1. This ratio is shown in Fig. 3, together with
a band corresponding to the physical value M% $ !%=2,
where M% ¼ 0:7755 GeV and !% ¼ 0:155 GeV is
believed to be the dominant resonance contribution. For
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fitted poles range ffiffiffiffiffisp
p ¼ ð0.71–0.77Þ GeV and ffiffiffiffiffisp

p ¼
ð0.83–0.86Þ GeV, as can be seen in Fig. 4. For comparison,
we also show as orange and blue bands what would
correspond to the effective VMD meson resonance
meff [39], using mρ ¼ 0.775 GeV, Γρ ¼ 0.148 GeV,
mω ¼ 0.783 GeV, Γω ¼ 0.008 GeV, mϕ ¼ 1.019 GeV,
and Γϕ ¼ 0.004 GeV. The bands represent the range of
such mass values due to the half-width rule [40–42], i.e.,
meff $ Γeff=2. We obtain meff ¼ 0.732ð71Þ GeV for the η
case and meff ¼ 0.822ð58Þ GeV for the η0, with errors due
to the half-width rule. Notice that raising the poles lowers
the LEPs (slope and curvature) and vice versa. As shown,
fitting spacelike data does not produce an accurate deter-
mination of the resonance poles as already indicated in

Refs. [25,26,43,44]. Thus, we do not recommend to apply
this method for such determinations. That includes the use
of VMD fits to determine the resonance parameters. An
alternative model-independent procedure of extracting
these parameters using PAs can be found in Ref. [45].
To reproduce the asymptotic behavior of the TFFs, we

have also considered the PN
NðQ2Þ sequence (second row in

Tables I and II). The results obtained are in nice agreement
with our previous determinations. The best fits are shown
as black solid lines in Fig. 1. We reach N ¼ 2 for the η case
and N ¼ 1 for the η0. Since these approximants contain
the correct high-energy behavior built in, they can be
extrapolated up to infinity (black dashed lines in Fig. 1) and
then predict the leading 1=Q2 coefficient:
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FIG. 1 (color online). η (left panel) and η0 (right panel) TFF best fits. Blue dashed lines show our best PL
1 ðQ2Þ when the measured two-

photon partial decay widths are not included in the fits, green dot-dashed lines show our best PL
1 ðQ2Þ when the two-photon widths are

included, and black solid lines show our best PN
NðQ2Þ in the latter case. Black dashed lines display the extrapolation of the PN

NðQ2Þ at
Q2 ¼ 0 and Q2 → ∞. Experimental data points are from CELLO (red circles) [32], CLEO (purple triangles) [33], L3 (blue diamonds)
[34], and BABAR (orange squares) [35] Collaborations.

TABLE I. Low-energy parameters for the η and η0 TFFs obtained from the PA fits to experimental data without including the measured
two-photon partial decay widths. The first column indicates the type of sequence used for the fit and N is the highest order reached with
that sequence. The last row shows the weighted average result for each LEP. We also present the quality of the fits in terms of χ2=DOF
(degrees of freedom). Errors are only statistical and symmetrized.

η TFF η0 TFF
N bη cη Fηγγð0Þ GeV−1 χ2=DOF N bη0 cη0 Fη0γγð0Þ GeV−1 χ2=DOF

PN
1 ðQ2Þ 2 0.45(13) 0.20(12) 0.235(53) 0.79 5 1.25(16) 1.57(42) 0.339(17) 0.70

PN
NðQ2Þ 1 0.36(6) 0.13(4) 0.201(28) 0.78 1 1.19(6) 1.42(15) 0.332(15) 0.68

Final 0.45(13) 0.20(12) 0.235(53) 1.25(16) 1.57(42) 0.339(17)

TABLE II. Low-energy parameters for the η and η0 TFFs obtained from the PA fits to experimental data including the measured two-
photon partial decay widths. The first column indicates the type of sequence used for the fit and N is the highest order reached with that
sequence. The last row shows the weighted average result for each LEP. We also present the quality of the fits in terms of χ2=DOF. Errors
are only statistical and symmetrized.

η TFF η0 TFF
N bη cη χ2=DOF N bη0 cη0 χ2=DOF

PN
1 ðQ2Þ 5 0.58(6) 0.34(8) 0.80 6 1.30(15) 1.72(47) 0.70

PN
NðQ2Þ 2 0.66(10) 0.47(15) 0.77 1 1.23(3) 1.52(7) 0.67

Final 0.60(6) 0.37(10) 1.30(15) 1.72(47)
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lim
Q2→∞

Q2Fηγ!γðQ2Þ ¼ 0.160ð24Þ GeV;

lim
Q2→∞

Q2Fη0γ!γðQ2Þ ¼ 0.255ð4Þ GeV: (4)

We emphasize once more the importance of including the
measured two-photon partial widths in the fits, that for the
case of the η TFF allows us to reach N ¼ 2 and then reduce
the uncertainty drastically. Otherwise, we would have
remained at N ¼ 1 with errors 5 times larger.
Finally, our combined weighted average results from

Table II, taking into account both types of sequences,
give

bη ¼ 0.60ð6Þstatð3Þsys; cη ¼ 0.37ð10Þstatð7Þsys;

bη0 ¼ 1.30ð15Þstatð7Þsys; cη0 ¼ 1.72ð47Þstatð34Þsys; (5)

where the second error is systematic (of the order of 5% and
20% for bP and cP, respectively). When the spread of
central values considered for the weighted averaged result
is larger than the error after averaging, we enlarge this error

to cover that spread5 [36]. Equation (5) represents the main
results of this work. For the case of the η0, with the PN

NðQ2Þ
sequence we could only reach N ¼ 1, which turns out to be
the first element on the PL

1 ðQ2Þ sequence. The first element
of each sequence is the worst and should not be taken for
final averaged results.
For the η, the slope of the TFF obtained in Eq. (5) can be

compared with bη ¼ 0.428ð89Þ from CELLO [32] and
bη ¼ 0.501ð38Þ from CLEO [33]. The TFF was also
measured in the timelike region with the results bη ¼
0.57ð12Þ from Lepton-G [46], bη ¼ 0.585ð51Þ from NA60
[47], bη ¼ 0.58ð11Þ from A2 [48], and bη ¼ 0.68ð26Þ
from WASA [49]. Recently, the A2 Collaboration reported
bη ¼ 0.59ð5Þ [50], the most precise experimental extraction
up to date. For the η0, the slope in Eq. (5) can be compared
with bη0 ¼ 1.46ð23Þ from CELLO [32], bη0 ¼ 1.24ð8Þ from
CLEO [33], and bη0 ¼ 1.6ð4Þ from the timelike analysis by
the Lepton-G Collaboration (cited in Ref. [39]). One should
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FIG. 2 (color online). Slope predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).
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FIG. 3 (color online). Curvature predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).

5We thank C. F. Redmer for discussions on the average
procedure.
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FIG. 2 (color online). Slope predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).
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FIG. 3 (color online). Curvature predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).

5We thank C. F. Redmer for discussions on the average
procedure.
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fitted poles range ffiffiffiffiffisp
p ¼ ð0.71–0.77Þ GeV and ffiffiffiffiffisp

p ¼
ð0.83–0.86Þ GeV, as can be seen in Fig. 4. For comparison,
we also show as orange and blue bands what would
correspond to the effective VMD meson resonance
meff [39], using mρ ¼ 0.775 GeV, Γρ ¼ 0.148 GeV,
mω ¼ 0.783 GeV, Γω ¼ 0.008 GeV, mϕ ¼ 1.019 GeV,
and Γϕ ¼ 0.004 GeV. The bands represent the range of
such mass values due to the half-width rule [40–42], i.e.,
meff $ Γeff=2. We obtain meff ¼ 0.732ð71Þ GeV for the η
case and meff ¼ 0.822ð58Þ GeV for the η0, with errors due
to the half-width rule. Notice that raising the poles lowers
the LEPs (slope and curvature) and vice versa. As shown,
fitting spacelike data does not produce an accurate deter-
mination of the resonance poles as already indicated in

Refs. [25,26,43,44]. Thus, we do not recommend to apply
this method for such determinations. That includes the use
of VMD fits to determine the resonance parameters. An
alternative model-independent procedure of extracting
these parameters using PAs can be found in Ref. [45].
To reproduce the asymptotic behavior of the TFFs, we

have also considered the PN
NðQ2Þ sequence (second row in

Tables I and II). The results obtained are in nice agreement
with our previous determinations. The best fits are shown
as black solid lines in Fig. 1. We reach N ¼ 2 for the η case
and N ¼ 1 for the η0. Since these approximants contain
the correct high-energy behavior built in, they can be
extrapolated up to infinity (black dashed lines in Fig. 1) and
then predict the leading 1=Q2 coefficient:
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FIG. 1 (color online). η (left panel) and η0 (right panel) TFF best fits. Blue dashed lines show our best PL
1 ðQ2Þ when the measured two-

photon partial decay widths are not included in the fits, green dot-dashed lines show our best PL
1 ðQ2Þ when the two-photon widths are

included, and black solid lines show our best PN
NðQ2Þ in the latter case. Black dashed lines display the extrapolation of the PN

NðQ2Þ at
Q2 ¼ 0 and Q2 → ∞. Experimental data points are from CELLO (red circles) [32], CLEO (purple triangles) [33], L3 (blue diamonds)
[34], and BABAR (orange squares) [35] Collaborations.

TABLE I. Low-energy parameters for the η and η0 TFFs obtained from the PA fits to experimental data without including the measured
two-photon partial decay widths. The first column indicates the type of sequence used for the fit and N is the highest order reached with
that sequence. The last row shows the weighted average result for each LEP. We also present the quality of the fits in terms of χ2=DOF
(degrees of freedom). Errors are only statistical and symmetrized.

η TFF η0 TFF
N bη cη Fηγγð0Þ GeV−1 χ2=DOF N bη0 cη0 Fη0γγð0Þ GeV−1 χ2=DOF

PN
1 ðQ2Þ 2 0.45(13) 0.20(12) 0.235(53) 0.79 5 1.25(16) 1.57(42) 0.339(17) 0.70

PN
NðQ2Þ 1 0.36(6) 0.13(4) 0.201(28) 0.78 1 1.19(6) 1.42(15) 0.332(15) 0.68

Final 0.45(13) 0.20(12) 0.235(53) 1.25(16) 1.57(42) 0.339(17)

TABLE II. Low-energy parameters for the η and η0 TFFs obtained from the PA fits to experimental data including the measured two-
photon partial decay widths. The first column indicates the type of sequence used for the fit and N is the highest order reached with that
sequence. The last row shows the weighted average result for each LEP. We also present the quality of the fits in terms of χ2=DOF. Errors
are only statistical and symmetrized.

η TFF η0 TFF
N bη cη χ2=DOF N bη0 cη0 χ2=DOF

PN
1 ðQ2Þ 5 0.58(6) 0.34(8) 0.80 6 1.30(15) 1.72(47) 0.70

PN
NðQ2Þ 2 0.66(10) 0.47(15) 0.77 1 1.23(3) 1.52(7) 0.67

Final 0.60(6) 0.37(10) 1.30(15) 1.72(47)
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lim
Q2→∞

Q2Fηγ!γðQ2Þ ¼ 0.160ð24Þ GeV;

lim
Q2→∞

Q2Fη0γ!γðQ2Þ ¼ 0.255ð4Þ GeV: (4)

We emphasize once more the importance of including the
measured two-photon partial widths in the fits, that for the
case of the η TFF allows us to reach N ¼ 2 and then reduce
the uncertainty drastically. Otherwise, we would have
remained at N ¼ 1 with errors 5 times larger.
Finally, our combined weighted average results from

Table II, taking into account both types of sequences,
give

bη ¼ 0.60ð6Þstatð3Þsys; cη ¼ 0.37ð10Þstatð7Þsys;

bη0 ¼ 1.30ð15Þstatð7Þsys; cη0 ¼ 1.72ð47Þstatð34Þsys; (5)

where the second error is systematic (of the order of 5% and
20% for bP and cP, respectively). When the spread of
central values considered for the weighted averaged result
is larger than the error after averaging, we enlarge this error

to cover that spread5 [36]. Equation (5) represents the main
results of this work. For the case of the η0, with the PN

NðQ2Þ
sequence we could only reach N ¼ 1, which turns out to be
the first element on the PL

1 ðQ2Þ sequence. The first element
of each sequence is the worst and should not be taken for
final averaged results.
For the η, the slope of the TFF obtained in Eq. (5) can be

compared with bη ¼ 0.428ð89Þ from CELLO [32] and
bη ¼ 0.501ð38Þ from CLEO [33]. The TFF was also
measured in the timelike region with the results bη ¼
0.57ð12Þ from Lepton-G [46], bη ¼ 0.585ð51Þ from NA60
[47], bη ¼ 0.58ð11Þ from A2 [48], and bη ¼ 0.68ð26Þ
from WASA [49]. Recently, the A2 Collaboration reported
bη ¼ 0.59ð5Þ [50], the most precise experimental extraction
up to date. For the η0, the slope in Eq. (5) can be compared
with bη0 ¼ 1.46ð23Þ from CELLO [32], bη0 ¼ 1.24ð8Þ from
CLEO [33], and bη0 ¼ 1.6ð4Þ from the timelike analysis by
the Lepton-G Collaboration (cited in Ref. [39]). One should
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FIG. 2 (color online). Slope predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).
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FIG. 3 (color online). Curvature predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).

5We thank C. F. Redmer for discussions on the average
procedure.
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final averaged results.
For the η, the slope of the TFF obtained in Eq. (5) can be

compared with bη ¼ 0.428ð89Þ from CELLO [32] and
bη ¼ 0.501ð38Þ from CLEO [33]. The TFF was also
measured in the timelike region with the results bη ¼
0.57ð12Þ from Lepton-G [46], bη ¼ 0.585ð51Þ from NA60
[47], bη ¼ 0.58ð11Þ from A2 [48], and bη ¼ 0.68ð26Þ
from WASA [49]. Recently, the A2 Collaboration reported
bη ¼ 0.59ð5Þ [50], the most precise experimental extraction
up to date. For the η0, the slope in Eq. (5) can be compared
with bη0 ¼ 1.46ð23Þ from CELLO [32], bη0 ¼ 1.24ð8Þ from
CLEO [33], and bη0 ¼ 1.6ð4Þ from the timelike analysis by
the Lepton-G Collaboration (cited in Ref. [39]). One should
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FIG. 2 (color online). Slope predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).
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FIG. 3 (color online). Curvature predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).

5We thank C. F. Redmer for discussions on the average
procedure.
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I. INTRODUCTION

The hadronic contributions to the anomalous magnetic mo-
ment of the muon aµ consists on three categories: vacuum po-
larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
(42�47)⇥10�11 [? ], 49⇥10�11 [? ].

For comparison, the precision of the Brookhaven g�2 ex-
periment is (54)

stat

(33)
sys

⇥10�11 [? ]. Recent proposals for
new g� 2 experiments at Fermilab [? ] and at J-PARC [? ]
plan to improve on the precision up to a level of 10⇥ 10�11.
In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.

A compleat discussion of hadronic light-by-light contribu-
tions involves the full rank-four hadronic vacuum polarization
Pµnlr(q1,q2,q3). However, it is believed [? ] that the domi-
nant part of this contribution comes from the one-particle re-
ducible pion-exchange piece, a

LbyL;p0
µ ⇠ 70⇥10�11, followed

by the h and h 0 contributions (aLbyL;h ,h 0
µ ⇠ 30⇥ 10�11). The

main ingredient on the determination of the pion-exchange
process a

LbyL,p0
µ is the double off-shell pion-photon-photon

transition form factor Fp0⇤g⇤g⇤((q1 +q2)2,q2
1,q

2
2) with a domi-

nant piece when the pion is on-shell[? ] (off-shellness effects
seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N

c

framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.

On the Large-N
c

limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
and the effect of the spectrum truncation should be taken into

⇤Electronic address: masjuan@ugr.es

account on the final systematic error [? ? ].
Another important source of uncertainty for these models

depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
TFF at q

2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a

LbyL;p0
µ do not seem to

be very sensitive to the correct asymptotic behavior for large
momenta [? ]. With our model-independent results for the
low-energy constants on the TFF we expect to have a good
control of the impact of this uncertainty on the a

LbyL;p0
µ .

We want to evaluate the impact of our results on the
a

LbyL;p0
µ . For doing that we will follow the pioneer work of

Ref. [? ] where a detailed study of different parameteriza-
tions were considered for the off-shell photons FF. We analyse
here three of them, the VMD form factor, the Lowest-Meson-
Dominance (LMD) form factor and the LMD+V form factor,
defined as:
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with c

v

= N

c

4p2
M

4
v

f

2
p

. The constants h1,h2,h5 and h7 should be
determined by experimental input or matching conditions.

With the VMD, LMD and LMD+V parameterizations the
authors of [? ] obtained a

LbyL;p0
µ = 5.6⇥ 10�10,7.3⇥ 10�10

and 5.8(1.0)⇥10�10 respectively. A way to ascribe a system-
atic error for the model-dependency of these ansätze would
account for the difference between the results of one approxi-
mant and the following one on the same sequence (see Refs.[?
? ? ] for a discussion on how to obtain this systematic error).

F

V MD

p0g⇤g(q
2,0) is indeed a T

0
1 (M

V

⌘ Mr ) with only one free
parameter that matches the anomaly a0 = 1/4p2

fp . Instead
of fixing the pole at Mr we could match the M

V

to reproduce
our ap . In that case the VMD parametrization would be a P

0
1 ,

we would obtain M

V

= 0.768(16)GeV, very similar to Mr but

slightly smaller, and a

LbyL;p0
µ = 5.65(10)⇥10�10.

F

LMD

p0g⇤g(q
2,0) is also a PTA, the T

1
1 (again M

V

⌘ Mr ) with
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larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
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certainties from the LbyL scattering contribution and leads to
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account on the final systematic error [? ? ].
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depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
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I. INTRODUCTION

The hadronic contributions to the anomalous magnetic mo-
ment of the muon aµ consists on three categories: vacuum po-
larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
(42�47)⇥10�11 [? ], 49⇥10�11 [? ].

For comparison, the precision of the Brookhaven g�2 ex-
periment is (54)

stat

(33)
sys

⇥10�11 [? ]. Recent proposals for
new g� 2 experiments at Fermilab [? ] and at J-PARC [? ]
plan to improve on the precision up to a level of 10⇥ 10�11.
In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.

A compleat discussion of hadronic light-by-light contribu-
tions involves the full rank-four hadronic vacuum polarization
Pµnlr(q1,q2,q3). However, it is believed [? ] that the domi-
nant part of this contribution comes from the one-particle re-
ducible pion-exchange piece, a

LbyL;p0
µ ⇠ 70⇥10�11, followed

by the h and h 0 contributions (aLbyL;h ,h 0
µ ⇠ 30⇥ 10�11). The

main ingredient on the determination of the pion-exchange
process a

LbyL,p0
µ is the double off-shell pion-photon-photon

transition form factor Fp0⇤g⇤g⇤((q1 +q2)2,q2
1,q

2
2) with a domi-

nant piece when the pion is on-shell[? ] (off-shellness effects
seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N

c

framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.

On the Large-N
c

limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
and the effect of the spectrum truncation should be taken into
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account on the final systematic error [? ? ].
Another important source of uncertainty for these models

depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
TFF at q

2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a

LbyL;p0
µ do not seem to

be very sensitive to the correct asymptotic behavior for large
momenta [? ]. With our model-independent results for the
low-energy constants on the TFF we expect to have a good
control of the impact of this uncertainty on the a

LbyL;p0
µ .

We want to evaluate the impact of our results on the
a

LbyL;p0
µ . For doing that we will follow the pioneer work of

Ref. [? ] where a detailed study of different parameteriza-
tions were considered for the off-shell photons FF. We analyse
here three of them, the VMD form factor, the Lowest-Meson-
Dominance (LMD) form factor and the LMD+V form factor,
defined as:
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. The constants h1,h2,h5 and h7 should be
determined by experimental input or matching conditions.

With the VMD, LMD and LMD+V parameterizations the
authors of [? ] obtained a

LbyL;p0
µ = 5.6⇥ 10�10,7.3⇥ 10�10

and 5.8(1.0)⇥10�10 respectively. A way to ascribe a system-
atic error for the model-dependency of these ansätze would
account for the difference between the results of one approxi-
mant and the following one on the same sequence (see Refs.[?
? ? ] for a discussion on how to obtain this systematic error).
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⌘ Mr ) with only one free
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fp . Instead
of fixing the pole at Mr we could match the M
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to reproduce
our ap . In that case the VMD parametrization would be a P

0
1 ,

we would obtain M

V

= 0.768(16)GeV, very similar to Mr but

slightly smaller, and a

LbyL;p0
µ = 5.65(10)⇥10�10.
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demands also better control on the TFF studied so far.
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tions involves the full rank-four hadronic vacuum polarization
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nant part of this contribution comes from the one-particle re-
ducible pion-exchange piece, a
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µ ⇠ 70⇥10�11, followed

by the h and h 0 contributions (aLbyL;h ,h 0
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seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N
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framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.

On the Large-N
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limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
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depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
TFF at q

2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a
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low-energy constants on the TFF we expect to have a good
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µ .
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µ . For doing that we will follow the pioneer work of

Ref. [? ] where a detailed study of different parameteriza-
tions were considered for the off-shell photons FF. We analyse
here three of them, the VMD form factor, the Lowest-Meson-
Dominance (LMD) form factor and the LMD+V form factor,
defined as:
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and 5.8(1.0)⇥10�10 respectively. A way to ascribe a system-
atic error for the model-dependency of these ansätze would
account for the difference between the results of one approxi-
mant and the following one on the same sequence (see Refs.[?
? ? ] for a discussion on how to obtain this systematic error).

F

V MD

p0g⇤g(q
2,0) is indeed a T

0
1 (M

V

⌘ Mr ) with only one free
parameter that matches the anomaly a0 = 1/4p2

fp . Instead
of fixing the pole at Mr we could match the M

V

to reproduce
our ap . In that case the VMD parametrization would be a P

0
1 ,

we would obtain M

V

= 0.768(16)GeV, very similar to Mr but

slightly smaller, and a

LbyL;p0
µ = 5.65(10)⇥10�10.

F

LMD

p0g⇤g(q
2,0) is also a PTA, the T

1
1 (again M

V

⌘ Mr ) with

General constraints on the Light-by-Light scattering contribution to the (g�2)µ

Pere Masjuan1, ⇤

1

Departamento de F´ısica Te´orica y del Cosmos and CAFPE, Universidad de Granada, E-18071 Granada, Spain

(Dated: June 8, 2012)

PACS numbers: 12.38.-t, 12.38.Lg, 12.39.Fe,13.40.Gp
Keywords: Pion Transition Form Factor, Padé Approximants, Anomalous Magnetic Moment
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The hadronic contributions to the anomalous magnetic mo-
ment of the muon aµ consists on three categories: vacuum po-
larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
(42�47)⇥10�11 [? ], 49⇥10�11 [? ].

For comparison, the precision of the Brookhaven g�2 ex-
periment is (54)
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⇥10�11 [? ]. Recent proposals for
new g� 2 experiments at Fermilab [? ] and at J-PARC [? ]
plan to improve on the precision up to a level of 10⇥ 10�11.
In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.

A compleat discussion of hadronic light-by-light contribu-
tions involves the full rank-four hadronic vacuum polarization
Pµnlr(q1,q2,q3). However, it is believed [? ] that the domi-
nant part of this contribution comes from the one-particle re-
ducible pion-exchange piece, a

LbyL;p0
µ ⇠ 70⇥10�11, followed

by the h and h 0 contributions (aLbyL;h ,h 0
µ ⇠ 30⇥ 10�11). The

main ingredient on the determination of the pion-exchange
process a
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µ is the double off-shell pion-photon-photon

transition form factor Fp0⇤g⇤g⇤((q1 +q2)2,q2
1,q

2
2) with a domi-

nant piece when the pion is on-shell[? ] (off-shellness effects
seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N

c

framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.

On the Large-N
c

limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
and the effect of the spectrum truncation should be taken into
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account on the final systematic error [? ? ].
Another important source of uncertainty for these models

depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
TFF at q

2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a

LbyL;p0
µ do not seem to

be very sensitive to the correct asymptotic behavior for large
momenta [? ]. With our model-independent results for the
low-energy constants on the TFF we expect to have a good
control of the impact of this uncertainty on the a
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µ .

We want to evaluate the impact of our results on the
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µ . For doing that we will follow the pioneer work of

Ref. [? ] where a detailed study of different parameteriza-
tions were considered for the off-shell photons FF. We analyse
here three of them, the VMD form factor, the Lowest-Meson-
Dominance (LMD) form factor and the LMD+V form factor,
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larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
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For comparison, the precision of the Brookhaven g�2 ex-
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In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.
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atic error for the model-dependency of these ansätze would
account for the difference between the results of one approxi-
mant and the following one on the same sequence (see Refs.[?
? ? ] for a discussion on how to obtain this systematic error).
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I. INTRODUCTION

The hadronic contributions to the anomalous magnetic mo-
ment of the muon aµ consists on three categories: vacuum po-
larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
(42�47)⇥10�11 [? ], 49⇥10�11 [? ].

For comparison, the precision of the Brookhaven g�2 ex-
periment is (54)

stat

(33)
sys

⇥10�11 [? ]. Recent proposals for
new g� 2 experiments at Fermilab [? ] and at J-PARC [? ]
plan to improve on the precision up to a level of 10⇥ 10�11.
In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.

A compleat discussion of hadronic light-by-light contribu-
tions involves the full rank-four hadronic vacuum polarization
Pµnlr(q1,q2,q3). However, it is believed [? ] that the domi-
nant part of this contribution comes from the one-particle re-
ducible pion-exchange piece, a

LbyL;p0
µ ⇠ 70⇥10�11, followed

by the h and h 0 contributions (aLbyL;h ,h 0
µ ⇠ 30⇥ 10�11). The

main ingredient on the determination of the pion-exchange
process a

LbyL,p0
µ is the double off-shell pion-photon-photon

transition form factor Fp0⇤g⇤g⇤((q1 +q2)2,q2
1,q

2
2) with a domi-

nant piece when the pion is on-shell[? ] (off-shellness effects
seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N

c

framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.

On the Large-N
c

limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
and the effect of the spectrum truncation should be taken into
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account on the final systematic error [? ? ].
Another important source of uncertainty for these models

depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
TFF at q

2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a

LbyL;p0
µ do not seem to

be very sensitive to the correct asymptotic behavior for large
momenta [? ]. With our model-independent results for the
low-energy constants on the TFF we expect to have a good
control of the impact of this uncertainty on the a

LbyL;p0
µ .

We want to evaluate the impact of our results on the
a

LbyL;p0
µ . For doing that we will follow the pioneer work of

Ref. [? ] where a detailed study of different parameteriza-
tions were considered for the off-shell photons FF. We analyse
here three of them, the VMD form factor, the Lowest-Meson-
Dominance (LMD) form factor and the LMD+V form factor,
defined as:
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. The constants h1,h2,h5 and h7 should be
determined by experimental input or matching conditions.

With the VMD, LMD and LMD+V parameterizations the
authors of [? ] obtained a

LbyL;p0
µ = 5.6⇥ 10�10,7.3⇥ 10�10

and 5.8(1.0)⇥10�10 respectively. A way to ascribe a system-
atic error for the model-dependency of these ansätze would
account for the difference between the results of one approxi-
mant and the following one on the same sequence (see Refs.[?
? ? ] for a discussion on how to obtain this systematic error).

F

V MD
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2,0) is indeed a T
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1 (M
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⌘ Mr ) with only one free
parameter that matches the anomaly a0 = 1/4p2

fp . Instead
of fixing the pole at Mr we could match the M

V

to reproduce
our ap . In that case the VMD parametrization would be a P

0
1 ,

we would obtain M

V

= 0.768(16)GeV, very similar to Mr but

slightly smaller, and a

LbyL;p0
µ = 5.65(10)⇥10�10.

F

LMD

p0g⇤g(q
2,0) is also a PTA, the T

1
1 (again M
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larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
(42�47)⇥10�11 [? ], 49⇥10�11 [? ].

For comparison, the precision of the Brookhaven g�2 ex-
periment is (54)
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plan to improve on the precision up to a level of 10⇥ 10�11.
In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.

A compleat discussion of hadronic light-by-light contribu-
tions involves the full rank-four hadronic vacuum polarization
Pµnlr(q1,q2,q3). However, it is believed [? ] that the domi-
nant part of this contribution comes from the one-particle re-
ducible pion-exchange piece, a

LbyL;p0
µ ⇠ 70⇥10�11, followed

by the h and h 0 contributions (aLbyL;h ,h 0
µ ⇠ 30⇥ 10�11). The

main ingredient on the determination of the pion-exchange
process a

LbyL,p0
µ is the double off-shell pion-photon-photon

transition form factor Fp0⇤g⇤g⇤((q1 +q2)2,q2
1,q

2
2) with a domi-

nant piece when the pion is on-shell[? ] (off-shellness effects
seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N

c

framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.

On the Large-N
c

limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
and the effect of the spectrum truncation should be taken into
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account on the final systematic error [? ? ].
Another important source of uncertainty for these models

depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
TFF at q

2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a

LbyL;p0
µ do not seem to

be very sensitive to the correct asymptotic behavior for large
momenta [? ]. With our model-independent results for the
low-energy constants on the TFF we expect to have a good
control of the impact of this uncertainty on the a

LbyL;p0
µ .

We want to evaluate the impact of our results on the
a

LbyL;p0
µ . For doing that we will follow the pioneer work of

Ref. [? ] where a detailed study of different parameteriza-
tions were considered for the off-shell photons FF. We analyse
here three of them, the VMD form factor, the Lowest-Meson-
Dominance (LMD) form factor and the LMD+V form factor,
defined as:
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determined by experimental input or matching conditions.

With the VMD, LMD and LMD+V parameterizations the
authors of [? ] obtained a

LbyL;p0
µ = 5.6⇥ 10�10,7.3⇥ 10�10

and 5.8(1.0)⇥10�10 respectively. A way to ascribe a system-
atic error for the model-dependency of these ansätze would
account for the difference between the results of one approxi-
mant and the following one on the same sequence (see Refs.[?
? ? ] for a discussion on how to obtain this systematic error).
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V MD
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2,0) is indeed a T
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⌘ Mr ) with only one free
parameter that matches the anomaly a0 = 1/4p2

fp . Instead
of fixing the pole at Mr we could match the M
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to reproduce
our ap . In that case the VMD parametrization would be a P

0
1 ,

we would obtain M

V

= 0.768(16)GeV, very similar to Mr but

slightly smaller, and a
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a la Melnikov-Vainshtein
Central value:

Publication:

m⇢0 = 1465 MeV
h1 = 0 ( BL limit)
h5 = 6.93 GeV4

�⇡0!��

m⇢ = 775 MeV
F⇡ = 92.4 MeV
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h1 = 0 ( BL limit)
h2 = �10 GeV2

slope
curvature

Preliminary, using exp data
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µ = 9.8⇥ 10�10
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I. INTRODUCTION

The hadronic contributions to the anomalous magnetic mo-
ment of the muon aµ consists on three categories: vacuum po-
larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
(42�47)⇥10�11 [? ], 49⇥10�11 [? ].

For comparison, the precision of the Brookhaven g�2 ex-
periment is (54)
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(33)
sys

⇥10�11 [? ]. Recent proposals for
new g� 2 experiments at Fermilab [? ] and at J-PARC [? ]
plan to improve on the precision up to a level of 10⇥ 10�11.
In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.

A compleat discussion of hadronic light-by-light contribu-
tions involves the full rank-four hadronic vacuum polarization
Pµnlr(q1,q2,q3). However, it is believed [? ] that the domi-
nant part of this contribution comes from the one-particle re-
ducible pion-exchange piece, a

LbyL;p0
µ ⇠ 70⇥10�11, followed

by the h and h 0 contributions (aLbyL;h ,h 0
µ ⇠ 30⇥ 10�11). The

main ingredient on the determination of the pion-exchange
process a

LbyL,p0
µ is the double off-shell pion-photon-photon

transition form factor Fp0⇤g⇤g⇤((q1 +q2)2,q2
1,q

2
2) with a domi-

nant piece when the pion is on-shell[? ] (off-shellness effects
seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N

c

framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.

On the Large-N
c

limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
and the effect of the spectrum truncation should be taken into
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account on the final systematic error [? ? ].
Another important source of uncertainty for these models

depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
TFF at q

2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a

LbyL;p0
µ do not seem to

be very sensitive to the correct asymptotic behavior for large
momenta [? ]. With our model-independent results for the
low-energy constants on the TFF we expect to have a good
control of the impact of this uncertainty on the a

LbyL;p0
µ .

We want to evaluate the impact of our results on the
a

LbyL;p0
µ . For doing that we will follow the pioneer work of

Ref. [? ] where a detailed study of different parameteriza-
tions were considered for the off-shell photons FF. We analyse
here three of them, the VMD form factor, the Lowest-Meson-
Dominance (LMD) form factor and the LMD+V form factor,
defined as:
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account for the difference between the results of one approxi-
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larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
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plan to improve on the precision up to a level of 10⇥ 10�11.
In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.

A compleat discussion of hadronic light-by-light contribu-
tions involves the full rank-four hadronic vacuum polarization
Pµnlr(q1,q2,q3). However, it is believed [? ] that the domi-
nant part of this contribution comes from the one-particle re-
ducible pion-exchange piece, a

LbyL;p0
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by the h and h 0 contributions (aLbyL;h ,h 0
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2) with a domi-
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seems to be mild [? ]).
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on the 1/N
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framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.
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limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
and the effect of the spectrum truncation should be taken into

⇤Electronic address: masjuan@ugr.es
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depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
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the pseudoscalar-pole simplifications in our calculations. A
preliminary discussion on off-shell effects is reported below.
In this section we plan to study the impact of the results

obtained in Sec. II to the HLBL with the intuition that
it is more important to have a good description at small
and intermediate energies, e.g., by reproducing the slope
and curvature of the TFFs, than a detailed short-distance
analysis since the angular integrals used to compute aHLBLμ
do not seem to be very sensitive to the correct asymptotic
behavior for large momenta [73].
In the large-Nc limit, QCD Green’s functions are

meromorphic functions with simple poles and no branch
cuts since consist of infinitely many noninteracting sharp
mesons states whose masses and decay constants are in
principle unknown. As such sum is not known in practice,
one ends up truncating the spectral function in a resonance
saturation scheme, the so-called minimal hadronic approxi-
mation [95]. The resonance masses used in each calculation
are then taken as the physical ones from PDG instead of the
corresponding masses in the large Nc. This assumption
together with the effect of the spectrum truncation should
be taken into account on the final systematic error [43,96].
A way of evade these caveats comes from the Padé

theory [43]. In this context, one defines the TFF as a PA
defined from its LEPs [82]:

FP01
Pγ!γ! ðQ2

1; Q
2
2Þ ¼ P0

1ðQ2
1; Q

2
2Þ ¼ a

b
Q2

1 þ b
b

Q2
2 þ b

; (11)

where the free parameters are matched at low energies with
the results in Table II, a is fixed by ΓP→γγ and b by the
slope bP.
The convergence of the PA sequence to a meromorphic

function is guaranteed by Pomerenke’s theorem [97]. The
problem is to know how fast this convergence is and also
how to ascribe a systematic error on each element of that
sequence. For meromorphic functions, the simplest way of
evaluating a systematic error is by comparing the difference
between two consecutive elements on the PA sequence [98]
(see Appendix B for details).
In our approach to the TFF, the second element on the PA

sequence is given by

FP12
Pγ!γ! ðQ2

1; Q
2
2Þ ¼ P1

2ðQ2
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2
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1 þ dÞ
aþ bQ2

2

ðQ2
2 þ cÞðQ2

2 þ dÞ
;

(12)

with four coefficients to be matched with ΓP→γγ , the slope
bP, the curvature of the TFF cP and the first effective vector
meson resonance accounted for the appropriate ρ;ω;ϕ
mixing [39], illustrated in Fig. 4. The error for the effective
mass is taken from the half-width rule [40,41]. The results
are collected in Table III.

The weighted average results for the low-energy param-
eters of the η0-TFF collected in Table II considered only the
PL
1 ðQ2Þ sequence since with the PN

NðQ2Þ we only reached
its first element. Therefore, in the determination of the
aHLBL;η

0
μ in Eq. (12) we used the low-energy parameter of

order OðQ2Þ3 instead of the effective mass obtained in
Ref. [39]. Both procedures yield very similar results.
The similarity of the results obtained with both approx-

imants (11) and (12) indicates, as expected [83], that the
low-energy region (up to 1–2 GeV) dominates the con-
tribution to aHLBL;PSμ . To evaluate the error on our approxi-
mation we look for the maximum of the difference in the
region up to 1 GeV between the P0

1ðQ2
1; Q

2
2Þ and

P1
2ðQ2

1; Q
2
2Þ as explained in Ref. [98]. Of course, this

difference depends on the energy, and grows as the energy
increases. At 1 GeV, the relative difference is about 5%, and
we take this error as a conservative estimate of the error on
the whole low-energy region. We should add this error to
the aHLBL;PSμ final result. In Appendix B, a more rigorous
way of estimating such error is presented.
In order to provide aHLBL;PSμ , we also collect the results

for the aHLBL;π
0

μ obtained in Ref. [82], where the same
method was used but with the full off-shell TFF, i.e.,
aHLBL;π

0

μ ¼ 6.49ð56Þ × 10−10 and aHLBL;π
0

μ ¼ 6.51ð71Þ ×
10−10 corresponding to the first and second elements on
the PA sequence, respectively.
There is a second way of computing the HLBL, which

incorporates 1=Nc corrections, that would reassess our
previous results. In this way, one makes use of the meson
dominance and the half-width rule when accounting for the
TFF (see Refs. [40,41,99,100]). Meson dominance means
to take the high-energy behavior given by pQCD and the
minimal number of mesons to satisfy its condition
[41,100]. Then, errors in the meson-dominated form factors
are estimated by the half-width rule, i.e., by treating
resonance masses as random variables distributed with
the dispersion given by its decay width. In this way,

FPγ!γðQ2Þ ¼ 1

4π2FP

m2
eff

m2
eff þQ2

; (13)

provided one has the relation m2
eff ¼ 8π2FPðĉqF

q
P þ ĉsFs

PÞ
for P ¼ η; η0 to satisfy the asymptotic limit (7). Numerical

TABLE III. Collection of results for the aHLBL;PSμ for PS ¼ η
and η0 contributions. The last column contains also the result
obtained in Ref. [82] for the π0-TFF, with errors combined in
quadrature. Results are in units of 10−10.
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2Þ η η0 Total

P0
1ðQ2
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2
2Þ 1.25(15) 1.21(12) 8.96(59)

P1
2ðQ2
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2
2Þ 1.27(19) 1.22(12) 9.00(74)

Eq. (13) 1.44(19) 1.27(29) 8.84(35)
Eq. (14) 1.38(16) 1.22(9) 8.48(45)
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with four coefficients to be matched with ΓP→γγ , the slope
bP, the curvature of the TFF cP and the first effective vector
meson resonance accounted for the appropriate ρ;ω;ϕ
mixing [39], illustrated in Fig. 4. The error for the effective
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are collected in Table III.
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increases. At 1 GeV, the relative difference is about 5%, and
we take this error as a conservative estimate of the error on
the whole low-energy region. We should add this error to
the aHLBL;PSμ final result. In Appendix B, a more rigorous
way of estimating such error is presented.
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dominance and the half-width rule when accounting for the
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to take the high-energy behavior given by pQCD and the
minimal number of mesons to satisfy its condition
[41,100]. Then, errors in the meson-dominated form factors
are estimated by the half-width rule, i.e., by treating
resonance masses as random variables distributed with
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q
P þ ĉsFs
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Figure 1. ⇡0 (left upper panel), ⌘ (right upper panel), and ⌘0 (lower panel) TFFs. Green-dot-dashed lines show
our best PL

1 (Q2) fit, and black-solid lines show our best PN
N(Q2) fit. Black-dashed lines display the extrapolation of

the PN
N(Q2) at Q2 = 0 and Q2 ! 1. Experimental data are from CELLO (red circles), CLEO (purple triangles),

and BABAR (orange squares) Colls. [8]. The ⇡0 figure contains also data from BELLE (blue diamonds) [9]; and
the ⌘0 figure data from L3 (blue diamonds) [10].

Table 1. ⇡0, ⌘, and ⌘0 slope bP, curvature cP, asymptotic limit, and contribution to HLBL.

bP cP limQ2!1 Q2FP�⇤�(Q2) aHLBL;P
µ

⇡0 0.0324(22) 1.06(27) · 10�3 2 f⇡ 6.49(56) · 10�10

⌘ 0.60(7) 0.37(12) 0.160(24)GeV 1.25(15) · 10�10

⌘0 1.30(17) 1.72(58) 0.255(4)GeV 1.27(19) · 10�10

and obtain, in such a way, the derivatives of the FP�⇤�(Q2) at the origin of energies in a simple,
systematic and model-independent way [5, 6].

Since the analytic properties of TFFs are not known, the kind of PA sequence to be used is not
determine in advance. We consider two di↵erent sequences and the comparison among them should
reassess our results. The first one is a PL

1 (Q2) sequence inspired by the success of the simple vector
meson dominance ansatz [5], and the second one is a PN

N(Q2) sequence which satisfy the pQCD
constrains Q2FP��⇤ (Q2) ⇠ constant. After combining both sequence’s results, slope and curvature
results are shown in Table 1, where limQ2!1 Q2FP�⇤�(Q2) from the PN

N(Q2) is also shown.
The low-energy parameters obtain with this method can be used to constrain hadronic models with

resonances used to account for the hadronic light-by-light scattering contribution part (HLBL) of the
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anomalous magnetic moment of the muon [11], rare pseudoscalar decays and continuum cross section
determinations in the charmonium region [12].

3 Applications of the transition form factors

3.1 Hadronic light-by-light scattering contribution to the muon (g � 2)

The HLBL cannot be directly related to any measurable cross section and requires the knowledge of
QCD contributions at all energy scales. Since this is not known yet, one needs to rely on hadronic
models to compute it. Such models introduce some systematic errors which are di�cult to quantify.
The large-Nc limit of QCD [13] provides a very useful framework to approach this problem but has,
however, a shortcoming. Calculations carried out in the large-Nc limit demand an infinite set of res-
onances. As such sum is not known in practice, one ends up truncating the spectral function in a
resonance saturation scheme, the so-called Minimal Hadronic Approximation [14]. The resonance
masses used in each calculation are then taken as the physical ones from PDG [15] instead of the cor-
responding (but unknown) masses in the large-Nc limit. Both problems might lead to large systematic
errors not included so far [5, 16, 17].

It was pointed out in Ref. [16] that, in the large-Nc framework, the Minimal Hadronic Approxi-
mation can be understood from the mathematical theory of Padé Approximants (PA) to meromorphic
functions. Obeying the rules from this mathematical framework, one can compute the desired quanti-
ties in a model-independent way and even be able to ascribe a systematic error to the approach [18].
One interesting detail from this theory [7] is that given a low-energy expansion of a meromorphic
function, a PA sequence converges much faster than a rational function with the poles fixed in ad-
vance (such as the common hadronic models used so far for evaluating the HLBL), especially when
the correct large Q2 behavior is imposed.

We will use, instead of a hadronic model for the TFF, a sequence of PA [16] build up from the
low-energy expansion obtained in the previous section. The TFF is considered to be o↵-shell. To
match the large momentum behavior with short-distance constraints from QCD, calculable using the
OPE, we consider the relations obtained in Ref. [11]. In practice this amounts to use for the TFFs the
expression:

FP0
1

P�⇤�⇤ (p2
P, q

2
1, q

2
2) = a

b
q2

1 � b
b

q2
2 � b

�
1 + c p2

P
�
, (1)

where pP = q1 + q2 and the free parameters are matched at low energies [5]: a is fixed by �P!��
from PDG [15]; and b by a matching to the slope bP from Table 1. The parameter c characterizes the
o↵-shellnes of the pseudoscalar and is obtained by imposing, along the lines of the Padé method, that
limq!1 FP01

⇡⇤�⇤�⇤ (q
2, q2, 0) = f⇡�/3,where � = (�3.3±1.1) GeV�2, with an error of 30% as proposed in

Ref. [11], and c = 0 for ⌘ and ⌘0. Our results are collected in Table 1 and are in nice agreement with
most of the recent determinations [11, 20].

3.2 ⌘ � ⌘0 mixing parameters

The physical ⌘ and ⌘0 mesons are an admixture of the S U(3) Lagrangian eignestates [19]. Deriving the
parameters governing the mixing is a challenging task. Usually, these are determined through the use
of ⌘(0)! �� decays as well as vector radiative decays into ⌘(0) together with �(J/ ! ⌘0�)/�(J/ !
⌘�) [19]. However, since pQCD predicts that the asymptotic limit of the TFF for the ⌘(0) is essentially
given in terms of these mixing parameters, we use our TFF parametrization to estimate the asymptotic

a la Padé

Hadronic Contributions to g-2 Mainz, April 2014



Thank you!


