The role of experimental data on the HLBL

Pere Masjuan Institut für Kernphysik Johannes Gutenberg-Universität Mainz Germany

Collaborative Research Centre 1044

Work in collaboration with Pablo Sanchez-Puertas

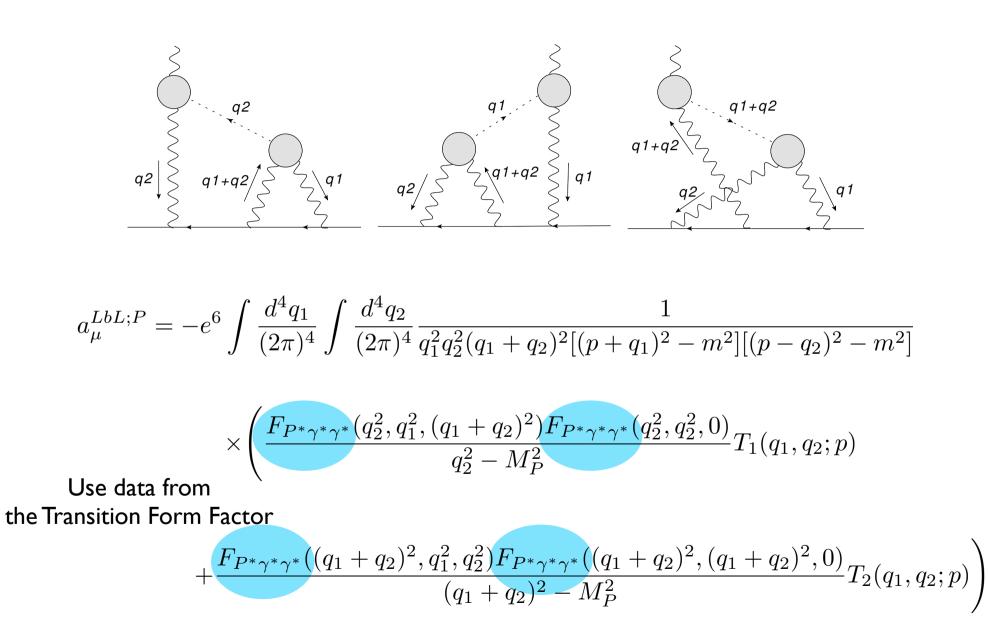
Mainz, XXth April 2014

From Quarks and Gluons To Hadrons and Nuclei

- How to link the general calculation with experiment?
- A particular counting scheme is used (not a systematical expansion) using ChPT-p counting and large-Nc counting:
 - large-Nc enhanced pieces seem dominant: important I/Nc corrections (just started)
 - ChPT enhanced pieces less dominant but role of pions polarizability may be important (cross-check)
- Double counting needs to be avoided: hadron exchanges versus quark-loops
- New general approaches: Dispersion Relations, CXQM, lattice
- Role of offshellness effects (Ballpark and $\eta\text{-}\eta^{\prime}$ suggest ~20% enhancement)
- MV discussion of the "external vertex"
- Role of excited vector states (beyond VMD): syst. improve of models

- How to link the general calculation with experiment?
- A particular counting scheme is used (not a systematical expansion) using ChPT-p counting and large-Nc counting:
 - large-Nc enhanced pieces seem dominant: important I/Nc corrections (just started)
 - ChPT enhanced pieces less dominant but role of pions polarizability may be important (cross-check)
- Double counting needs to be avoided: hadron exchanges versus quark-loops
- New general approaches: Dispersion Relations, CXQM, lattice
- Role of offshellness effects (Ballpark and η - η ' suggest ~20% enhancement)
- MV discussion of the "external vertex"
- Role of excited vector states (beyond VMD): syst. improve of models

- How to link the general calculation with experiment?
- A particular counting scheme is used (not a systematical expansion) using ChPT-p counting and large-Nc counting:
 - large-Nc enhanced pieces seem dominant: important I/Nc corrections (just started)
 - ChPT enhanced pieces less dominant but role of pions polarizability may be important (cross-check)
- Double counting needs to be avoided: hadron exchanges versus quark-loops
- New general approaches: Dispersion Relations, CXQM, lattice
- Role of offshellness effects (Ballpark and η - η ' suggest ~20% enhancement)
- MV discussion of the "external vertex"
- Role of excited vector states (beyond VMD): syst. improve of models

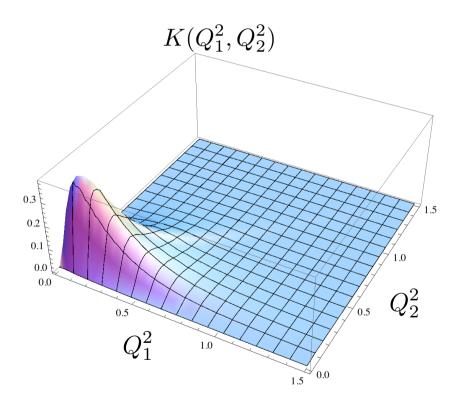

- How to link the general calculation with experiment?
- A particular counting scheme is used (not a systematical expansion) using ChPT-p counting and large-Nc counting:
 - large-Nc enhanced pieces seem dominant: important I/Nc corrections (just started)
 - ChPT enhanced pieces less dominant but role of pions polarizability may be important (cross-check)
- Double counting needs to be avoided: hadron exchanges versus quark-loops
- New general approaches: Dispersion Relations, CXQM, lattice
- Role of offshellness effects (Ballpark and η - η ' suggest ~20% enhancement)
- MV discussion of the "external vertex"
- Role of excited vector states (beyond VMD): syst. improve of models

- How to link the general calculation with experiment?
- A particular counting scheme is used (not a systematical expansion) using ChPT-p counting and large-Nc counting:
 - large-Nc enhanced pieces seem dominant: important I/Nc corrections (just started)
 - ChPT enhanced pieces less dominant but role of pions polarizability may be important (cross-check)
- Double counting needs to be avoided: hadron exchanges versus quark-loops
- New general approaches: Dispersion Relations, CχQM, lattice
- Role of offshellness effects (Ballpark and η - η ' suggest ~20% enhancement)
- MV discussion of the "external vertex"
- Role of excited vector states (beyond VMD): syst. improve of models

- How to link the general calculation with experiment?
- A particular counting scheme is used (not a systematical expansion) using ChPT-p counting and large-Nc counting:
 - large-Nc enhanced pieces seem dominant: important I/Nc corrections (just started)
 - ChPT enhanced pieces less dominant but role of pions polarizability may be important (cross-check)
- Double counting needs to be avoided: hadron exchanges versus quark-loops
- New general approaches: Dispersion Relations, CXQM, lattice
- Role of offshellness effects (Ballpark and $\eta\text{-}\eta^{\prime}$ suggest ~20% enhancement)
- MV discussion of the "external vertex"
- Role of excited vector states (beyond VMD): syst. improve of models

- How to link the general calculation with experiment?
- A particular counting scheme is used (not a systematical expansion) using ChPT-p counting and large-Nc counting:
 - large-Nc enhanced pieces seem dominant: important I/Nc corrections (just started)
 - ChPT enhanced pieces less dominant but role of pions polarizability may be important (cross-check)
- Double counting needs to be avoided: hadron exchanges versus quark-loops
- New general approaches: Dispersion Relations, CXQM, lattice
- Role of offshellness effects (Ballpark and η - η ' suggest ~20% enhancement)
- MV discussion of the "external vertex"
- Role of excited vector states (beyond VMD): syst. improve of models

- How to link the general calculation with experiment?
- A particular counting scheme is used (not a systematical expansion) using ChPT-p counting and large-Nc counting:
 - large-Nc enhanced pieces seem dominant: important I/Nc corrections (just started)
 - ChPT enhanced pieces less dominant but role of pions polarizability may be important (cross-check)
- Double counting needs to be avoided: hadron exchanges versus quark-loops
- New general approaches: Dispersion Relations, CXQM, lattice
- Role of offshellness effects (Ballpark and η - η ' suggest ~20% enhancement)
- MV discussion of the "external vertex"
- Role of excited vector states (beyond VMD): syst. improve of models



• Extraction of meson TFF and HLBL

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy Constants, constrain hadronic model and estimation of π^0 -HLBL

$$a_{\mu}^{LbyL;\pi^{0}} = e^{6} \int \frac{d^{4}Q_{1}}{(2\pi)^{4}} \int \frac{d^{4}Q_{2}}{(2\pi)^{4}} K(Q_{1}^{2},Q_{2}^{2})$$

Using $F_{\pi^0\gamma^*\gamma^*}(Q_1^2, Q_2^2) \sim P_1^0(Q_1^2, Q_2^2)$ (main energy range from 0 to I GeV²)

• Extraction of meson TFF and HLBL

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy Constants, constrain hadronic model and estimation of π^0 -HLBL

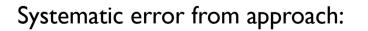
0.3

0.2

0.1 0.0

0.5

 Q_{1}^{2}


1.0

1.5

 $K(Q_1^2, Q_2^2)$

$$a_{\mu}^{LbyL;\pi^{0}} = e^{6} \int \frac{d^{4}Q_{1}}{(2\pi)^{4}} \int \frac{d^{4}Q_{2}}{(2\pi)^{4}} K(Q_{1}^{2},Q_{2}^{2})$$

Using $F_{\pi^0\gamma^*\gamma^*}(Q_1^2, Q_2^2) \sim P_1^0(Q_1^2, Q_2^2)$ (main energy range from 0 to I GeV²)

$$P_1^0(Q_1^2, Q_2^2)$$
 vs $P_2^1(Q_1^2, Q_2^2) \longrightarrow 5\%$

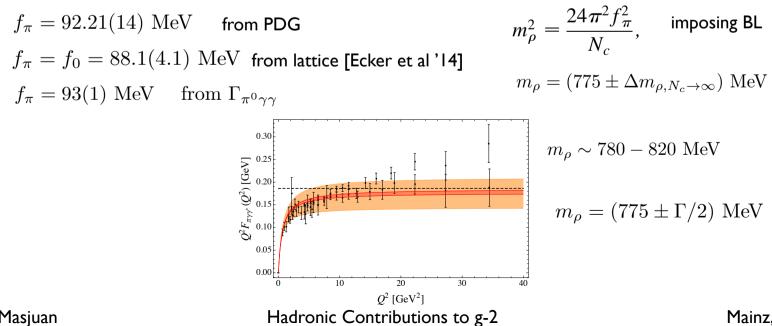
(convergence guaranteed by Pomerenke's theorem)

[P.M.,Peris,'07]

Hadronic Contributions to g-2

5

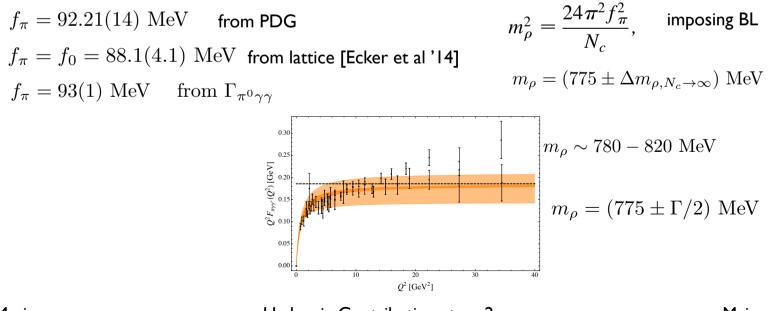
 Q_{2}^{2}


 $F_{P^*\gamma^*\gamma^*}(q_3^2, q_1^2, q_2^2)$

Use hadronic models constrained with chiral and large-Nc arguments Use data from the Transition Form Factor for numerical integral

Use hadronic models constrained with chiral and large-Nc arguments

$$F(0) = \frac{1}{4\pi^2 f_{\pi}}, \quad F(Q^2) \to \frac{6f_{\pi}}{N_c Q^2} + \cdots \qquad \text{ABJ and BL}$$

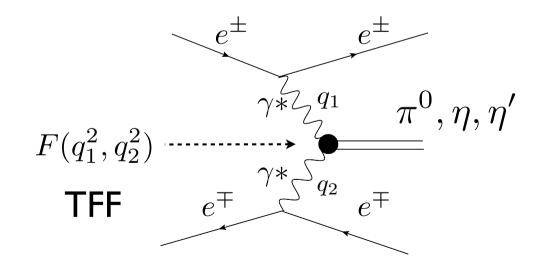

$$F(Q^2) = \frac{1}{4\pi^2 f_{\pi}} \frac{m_{\rho}^2}{m_{\rho}^2 + Q^2}, \qquad f_{\pi} = ? \quad m_{\rho} = ?$$

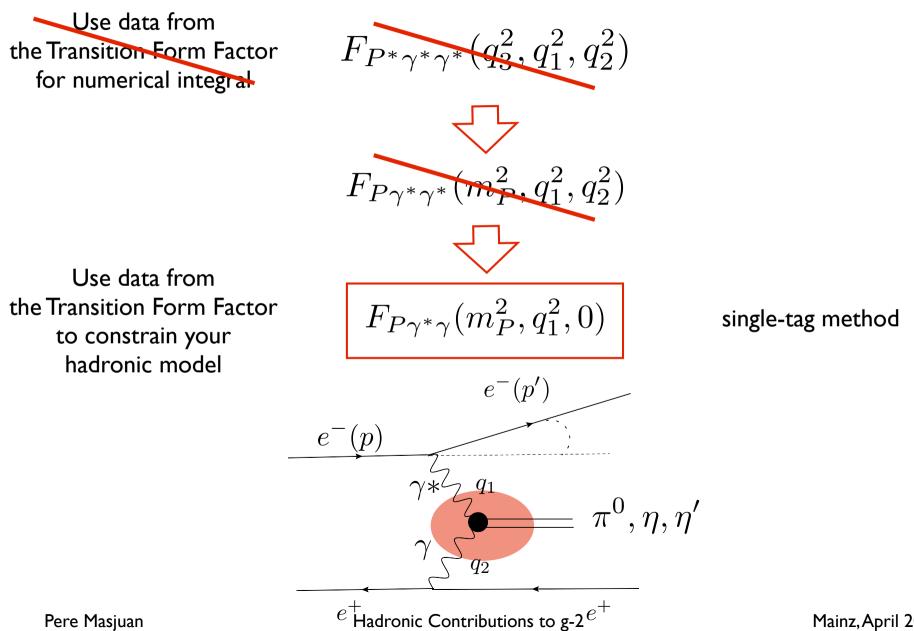
Use hadronic models constrained with chiral and large-Nc arguments

$$F(0) = \frac{1}{4\pi^2 f_{\pi}}, \quad F(Q^2) \to \frac{6f_{\pi}}{N_c Q^2} + \cdots$$
 ABJ and BL

$$F(Q^2) = \frac{1}{4\pi^2 f_{\pi}} \frac{m_{\rho}^2 m_{\rho'}^2 + 24f_{\pi}^2 \pi^2 Q^2 / N_c}{(m_{\rho}^2 + Q^2)(m_{\rho'}^2 + Q^2)}$$

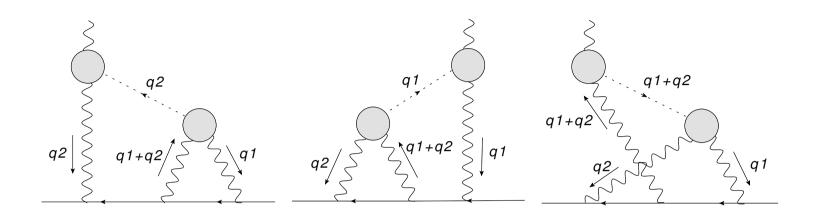
Use data from the Transition Form Factor for numerical integral


 $F_{P^*\gamma^*\gamma^*}(q_3^2, q_1^2, q_2^2)$

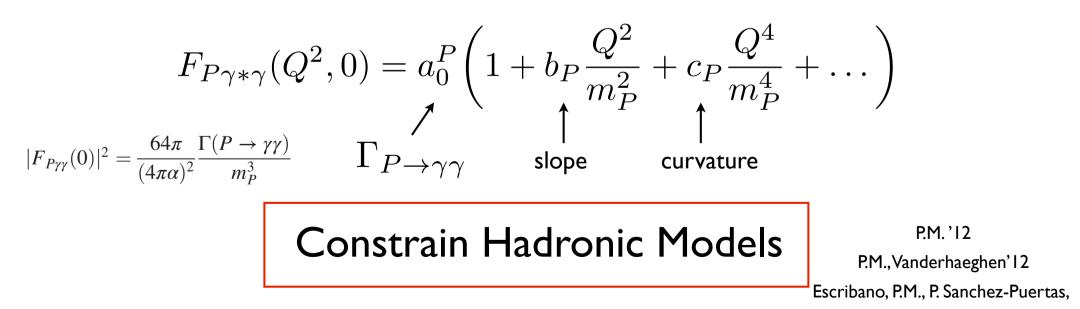

Use data from the Transition Form Factor for numerical integral

 $F_{P^*\gamma^*\gamma^*}(q_3^2, q_1^2, q_2^2)$

double-tag method



Use data from the Transition Form Factor F for numerical integral


Use data from the Transition Form Factor to constrain your hadronic model $F_{P^*\gamma^*\gamma^*}(q_3^2, q_1^2, q_2^2)$ $F_{P\gamma^*\gamma^*}(m_P^2, q_1^2, q_2^2)$ $F_{P\gamma^*\gamma}(m_P^2, q_1^2, 0)$

How??

Nice synergy between experiment and theory

its calculation requires info. on the pseudoscalar form factors

Our proposal use Padé Approximants

[P.M.'12; R. Escribano, P.M., P. Sanchez-Puertas, '13]

$$\begin{split} F_{P\gamma*\gamma}(Q^2,0) &= a_0^P \bigg(1 + b_P \frac{Q^2}{m_P^2} + c_P \frac{Q^4}{m_P^4} + \dots \bigg) \\ & \swarrow \\ \Gamma_{P \to \gamma\gamma} & \text{slope} & \text{curvature} \end{split}$$

Our proposal use Padé Approximants

[P.M.'12; R. Escribano, P.M., P. Sanchez-Puertas, '13]

$$\begin{split} F_{P\gamma*\gamma}(Q^2,0) &= a_0^P \left(1 + b_P \frac{Q^2}{m_P^2} + c_P \frac{Q^4}{m_P^4} + \dots \right) \\ & \swarrow \\ \Gamma_{P \to \gamma\gamma} \quad \text{slope} \quad \text{curvature} \end{split}$$

We have published space-like data for $Q^2 F_{P\gamma*\gamma}(Q^2,0)$

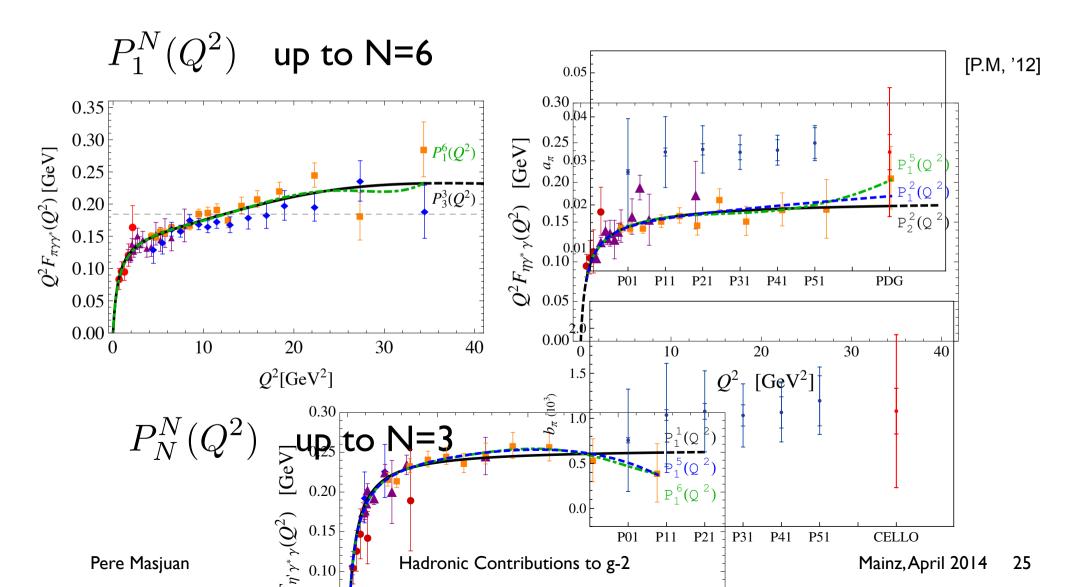
$$Q^{2}F_{P\gamma*\gamma}(Q^{2},0) = a_{0}Q^{2} + a_{1}Q^{4} + a_{2}Q^{6} + \dots$$
$$P_{M}^{N}(Q^{2}) = \frac{T_{N}(Q^{2})}{R_{M}(Q^{2})} = a_{0}Q^{2} + a_{1}Q^{4} + a_{2}Q^{6} + \dots + \mathcal{O}((Q^{2})^{N+M+1})$$

Pere Masjuan

Our proposal use Padé Approximants

[P.M.'12; R. Escribano, P.M., P. Sanchez-Puertas, '13]

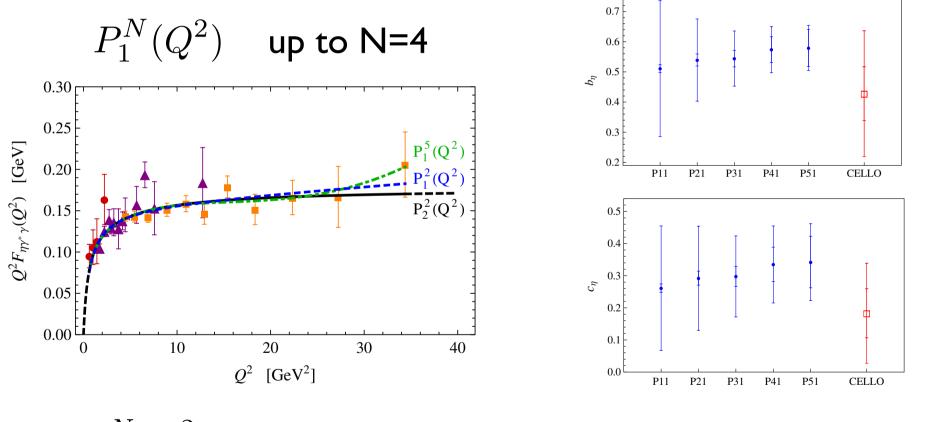
$$\begin{split} F_{P\gamma*\gamma}(Q^2,0) &= a_0^P \left(1 + b_P \frac{Q^2}{m_P^2} + c_P \frac{Q^4}{m_P^4} + \dots \right) \\ & \swarrow \\ \Gamma_{P \to \gamma\gamma} \quad \text{slope} \quad \text{curvature} \end{split}$$


We have published space-like data for $Q^2 F_{P\gamma*\gamma}(Q^2,0)$

$$Q^2 F_{P\gamma*\gamma}(Q^2, 0) = a_0 Q^2 + a_1 Q^4 + a_2 Q^6 + \dots$$

$$P_1^1(Q^2) = \frac{a_0Q^2}{1 - a_1Q^2} \longrightarrow \begin{array}{c} P_1^N(Q^2) = P_1^1(Q^2), P_1^2(Q^2), P_1^3(Q^2), \dots \\ P_N^N(Q^2) = P_1^1(Q^2), P_2^2(Q^2), P_3^3(Q^2), \dots \end{array}$$

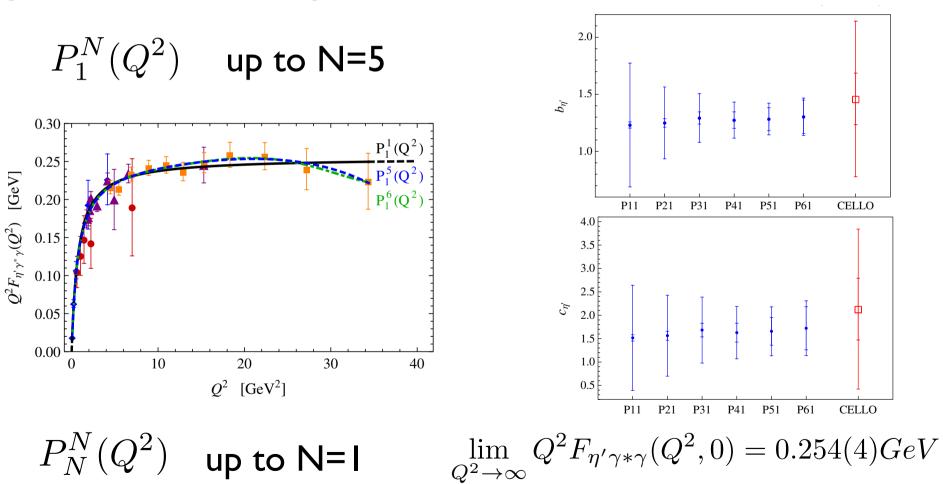
π^0 -TFF


Fit to Space-like data: CELLO'91, CLEO'98, BABAR'09 and Belle'12

η-TFF

Fit to Space-like data: CELLO'91, CLEO'98, BABAR'11+ $\Gamma_{\eta\to\gamma\gamma}$

[R.Escribano, P.M., P. Sanchez-Puertas, '13]



 $P_N^N(Q^2)$ up to N=2

 $\lim_{Q^2 \to \infty} Q^2 F_{\eta \gamma * \gamma}(Q^2, 0) = 0.164(2) GeV$

η'-TFF

Fit to Space-like data: CELLO'91, CLEO'98, L3'98, BABAR'11+ $\Gamma_{\eta' \to \gamma\gamma}$

[R.Escribano, P.M., P. Sanchez-Puertas, '13]

Pere Masjuan

a la Knecht-Nyffeler

Central value:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2},q_{2}^{2}) = \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2}) + h_{1}(q_{1}^{2}+q_{2}^{2})^{2} + h_{2}q_{1}^{2}q_{2}^{2} + h_{5}(q_{1}^{2}+q_{2}^{2}) + h_{7}}{(q_{1}^{2}-M_{V_{1}}^{2})(q_{1}^{2}-M_{V_{2}}^{2})(q_{2}^{2}-M_{V_{1}}^{2})(q_{2}^{2}-M_{V_{2}}^{2})}$$

Publication:

$$F_{\pi} = 92.4 \text{ MeV}$$

 $m_{\rho} = 769 \text{ MeV}$
 $m_{\rho'} = 1465 \text{ MeV}$
 $h_1 = 0 \text{ (BL limit)}$
 $h_5 = 6.93 \text{ GeV}^4$
 $h_2 = -10 \text{ GeV}^2$

$$a_{\mu}^{\mathrm{HLBL},\pi} = 6.3 \times 10^{-10}$$

Preliminary, using exp data $\Gamma_{\pi^0 \to \gamma \gamma}$ $m_{\rho} = 775 \text{ MeV}$ $h_1 = 0 \text{ (BL limit)}$ $h_2 = -10 \text{ GeV}^2$ slope curvature $a_{\mu}^{\text{HLBL},\pi} = 7.5 \times 10^{-10}$

a la Knecht-Nyffeler

Error budget:

$$\begin{split} F_{\pi^{0}\gamma^{*}\gamma^{*}}^{VMD}(q_{1}^{2},q_{2}^{2}) &= -\frac{N_{c}}{12\pi^{2}f_{\pi}} \frac{M_{V}^{2}}{(q_{1}^{2}-M_{V}^{2})} \frac{M_{V}^{2}}{(q_{2}^{2}-M_{V}^{2})} \\ F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD}(q_{1}^{2},q_{2}^{2}) &= \frac{f_{\pi}}{3} \frac{(q_{1}^{2}+q_{2}^{2})-c_{V}}{(q_{1}^{2}-M_{V}^{2})(q_{2}^{2}-M_{V}^{2})} \\ F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2},q_{2}^{2}) &= \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2})+h_{1}(q_{1}^{2}+q_{2}^{2})^{2}+h_{2}q_{1}^{2}q_{2}^{2}+h_{5}(q_{1}^{2}+q_{2}^{2})+h_{7}(q_{1}^{2}-M_{V}^{2})(q_{1}^{2}-M_{V}^{2})(q_{2}^{2}-M_{V}^{2})} \\ F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2},q_{2}^{2}) &= \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2})+h_{1}(q_{1}^{2}+q_{2}^{2})^{2}+h_{2}q_{1}^{2}q_{2}^{2}+h_{5}(q_{1}^{2}+q_{2}^{2})+h_{7}(q_{1}^{2}-M_{V}^{2})(q_{1}^{2}-M_{V}^{2})(q_{2}^{2}-M_{V}^{2})} \\ F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2},q_{2}^{2}) &= \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2})+h_{1}(q_{1}^{2}+q_{2}^{2})^{2}+h_{2}q_{1}^{2}q_{2}^{2}+h_{5}(q_{1}^{2}+q_{2}^{2})+h_{7}(q_{1}^{2}-M_{V}^{2})(q_{1}^{2}-M_{V}^{2})(q_{2}^{2}-M_{V}^{2})} \\ F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2},q_{2}^{2}) &= \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2})+h_{1}(q_{1}^{2}+q_{2}^{2})^{2}+h_{2}q_{1}^{2}q_{2}^{2}+h_{5}(q_{1}^{2}+q_{2}^{2})+h_{7}(q_{1}^{2}-M_{V}^{2})(q_{1}^{2}-M_{V}^{2})} \\ F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2},q_{2}^{2}) &= \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2})+h_{1}(q_{1}^{2}-q_{2}^{2})^{2}+h_{2}(q_{1}^{2}-q_{2}^{2}+h_{5}(q_{1}^{2}+q_{2}^{2})+h_{7}(q_{1}^{2}-M_{V}^{2})} \\ F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2},q_{2}^{2}) &= \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2})+h_{7}(q_{1}^{2}-M_{V}^{2})(q_{1}^{2}-M_{V}^{2})(q_{2}^{2}-M_{V}^{2})} \\ F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2}+q_{2}^{2}) &= \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2})+h_{7}(q_{1}^{2}-M_{V}^{2})(q_{1}^{2}-M_{V}^{2})(q_{2}^{2}-M_{V}^{2})} \\ F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2}+q_{2}^{2}) &= \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2})+h_{7}(q_{1}^{2}-M_{V}^{2})(q_{1}^{2}-M_{V}^{2})(q_{2}^$$

 $\Delta F_{\pi} \Rightarrow 2\Delta a_{\mu}^{\text{HLBL, P}}$ $\Delta \text{ slope} \Rightarrow 0.75\Delta a_{\mu}^{\text{HLBL, P}}$ $\Delta \text{ curv.} \Rightarrow 0.5\Delta a_{\mu}^{\text{HLBL, P}}$ $\Delta m_{\rho} = \Gamma/2 \Rightarrow 1.3\Delta a_{\mu}^{\text{HLBL, F}}$

 $\Delta a_{\mu}^{\mathrm{HLBL},\pi} \sim 15\%$

Current PDG:
$$\Delta F_{\pi} \sim 1.1\%$$

 $\Delta \text{ slope} \sim 13\%$
 $\Delta \text{ curvature} \sim 25\%$
Chiral limit $F_0 \rightarrow F_{\pi} \sim 5\%$
I/Nc $\Delta m_{\rho} \sim 10\%$

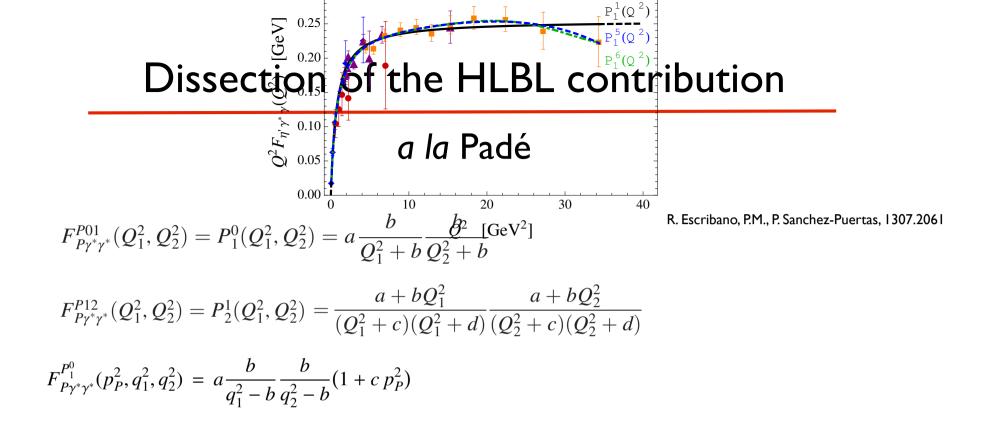
Pere Masjuan

a la Melnikov-Vainshtein

Central value:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2},q_{2}^{2}) = \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2}) + h_{1}(q_{1}^{2}+q_{2}^{2})^{2} + h_{2}q_{1}^{2}q_{2}^{2} + h_{5}(q_{1}^{2}+q_{2}^{2}) + h_{7}}{(q_{1}^{2}-M_{V_{1}}^{2})(q_{1}^{2}-M_{V_{2}}^{2})(q_{2}^{2}-M_{V_{1}}^{2})(q_{2}^{2}-M_{V_{2}}^{2})}$$

Publication:


 $F_{\pi} = 92.4 \text{ MeV}$ $m_{\rho} = 769 \text{ MeV}$ $m_{\rho'} = 1465 \text{ MeV}$ $h_1 = 0 \text{ (BL limit)}$ $h_5 = 6.93 \text{ GeV}^4$ $h_2 = -10 \text{ GeV}^2$ $a_{\mu}^{\text{HLBL},\pi} = 7.7 \times 10^{-10}$ Preliminary, using exp data $\Gamma_{\pi^0 \to \gamma \gamma}$ $m_{\rho} = 775 \text{ MeV}$ $h_1 = 0 \text{ (BL limit)}$ $h_2 = -10 \text{ GeV}^2$ slope curvature $a_{\mu}^{\text{HLBL},\pi} = 9.8 \times 10^{-10}$

a la Melnikov-Vainshtein

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2},q_{2}^{2}) = \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2}) + h_{1}(q_{1}^{2}+q_{2}^{2})^{2} + h_{2}q_{1}^{2}q_{2}^{2} + h_{5}(q_{1}^{2}+q_{2}^{2}) + h_{7}}{(q_{1}^{2}-M_{V_{1}}^{2})(q_{1}^{2}-M_{V_{2}}^{2})(q_{2}^{2}-M_{V_{1}}^{2})(q_{2}^{2}-M_{V_{2}}^{2})}$$

$$\Delta F_{\pi} \Rightarrow 2\Delta a_{\mu}^{\text{HLBL, P}}$$
$$\Delta \text{ slope} \Rightarrow 1\Delta a_{\mu}^{\text{HLBL, P}}$$
$$\Delta \text{ curv.} \Rightarrow 2\Delta a_{\mu}^{\text{HLBL, P}}$$
$$\Delta m_{\rho} = \Gamma/2 \Rightarrow 1.3\Delta a_{\mu}^{\text{HLBL, P}}$$

$$\Delta a_{\mu}^{\mathrm{HLBL},\pi} \sim 30\%$$

	b_P	CP	$\lim_{Q^2\to\infty} Q^2 F_{P\gamma^*\gamma}(Q^2)$	$a_{\mu}^{ ext{HLBL}; ext{P}}$
π^0	0.0324(22)	$1.06(27) \cdot 10^{-3}$	$2f_{\pi}$	$6.49(56) \cdot 10^{-10}$
η	0.60(7)	0.37(12)	0.160(24)GeV	$1.25(15) \cdot 10^{-10}$
η'	1.30(17)	1.72(58)	0.255(4)GeV	$1.27(19) \cdot 10^{-10}$

$F_{P\gamma\gamma^*}(Q_1^2,Q_2^2)$	η	η'	Total
$\overline{P_1^0(Q_1^2,Q_2^2)}$	1.25(15)	1.21(12)	8.96(59)
$P_2^{1}(Q_1^{2}, Q_2^{\overline{2}})$	1.27(19)	1.22(12)	9.00(74)
Eq. (13)	1.44(19)	1.27(29)	8.84(35)
Eq. (14)	1.38(16)	1.22(9)	8.48(45)

$$a_{\mu}^{HLBL;PS} = 8.9(6)(4) \times 10^{-10}$$

Thank you!