Semileptonic and Leptonic D Decays from BESIII

Daniel Cronin-Hennessy University of Minnesota Aug 25 2014 HQL2014

The BES-III Collaboration

Outline

- Overview of BEPCII/BESIII
- Motivation for (Semi)Leptonic D Decay Physics
- Leptonic Analysis
- Semileptonic Analysis
- Summary

BEPCII: a high luminosity double-ring collider

BESIII ψ (3770) Data Sample

2.92 fb⁻¹ data were taken around 3.773 GeV $e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^$ $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D}^0$

The detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

BESIII

BESIII + Lattice QCD +B factories

BESIII + Lattice QCD +B factories + ppbar

Leptonic D Decay

$$\Gamma(D_q^+ \to | \upsilon) = \frac{1}{8\pi} G_F^2 M_{D_q^+} m_l^2 (1 - \frac{m_l^2}{M_{D_+}^2}) (f_{D_+}^2) |V_{cq}|^2$$

$$\Delta M_{d} = 0.50 \, ps^{-1} \left[\frac{\sqrt{B_{B_{d}}} f_{B_{d}}}{200 MeV} \right]^{2} \left[\frac{|V_{td}|}{8.8 \times 10^{-3}} \right]^{2}$$

Decay constant ~ $|\psi(0)|^2$ (QCD). Precision f_D allows precise extraction of |Vcq|In the B sector a similar factor is in the mixing equation. Alternatively, $|Vcd|^2$ from unitarity constraints allow a test of lattice QCD of f_D .

Ratios of the decay constant are particularly strong tests. Ratios of t and m modes are windows to new physics.

New Physics
$$\frac{\Gamma(D^+ \to \tau^+ \nu)}{\Gamma(D^+ \to \mu^+ \nu)} \neq \frac{m_{\tau}^2 \left(1 - m_{\tau}^2 / M_D^2\right)^2}{m_{\mu}^2 \left(1 - m_{\mu}^2 / M_D^2\right)^2}$$

→Require single track on other side: μ

- PID suppresses K
- Calorimeter suppresses π^+
- Require low energy in CC

Use D 4-vector to calculate missing mass (~0 for v).

Excusive SL Decays

Tag Modes:

$$D^{0} \rightarrow K^{-}\pi^{+}$$

$$D^{0} \rightarrow K^{-}\pi^{+}\pi^{0}$$

$$D^{0} \rightarrow K^{-}\pi^{+}\pi^{0}\pi^{0}$$

$$D^{0} \rightarrow K^{-}\pi^{+}\pi^{-}\pi^{+}$$

$$D^{0} \rightarrow K^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{0}$$

Studies of $D^0 \rightarrow K(\pi)^- e^+ v$ at BESIII

New results based on 2.917 fb⁻¹ data supersede those preliminary results presented at CHARM2012 which was based on ~1/3 data.

Comparisons of B[$D^0 \rightarrow K(\pi)^- e^+ v$]

Fits to $\Delta\Gamma[D^0 \rightarrow K(\pi)^- e^+ v]$

Extracted Parameters of Form Factors

		D⁰→K-e+v		D⁰→π ⁻ e⁺v
Simple Pole	f _K ⁺ (0) V _{cs}	0.7209±0.0022±0.0033	f _n () cd	0.1475±0.0014±0.0005
	M _{pole}	1.9207±0.0103±0.0069	pole	1.9114±0.0118±0.0038
Mod. Pole	f _K ⁺ (0) V _{cs}	0.7163±0.0024±0.00.	$V_{\pi}^{+}(0) V_{cd} $	$0.1437 \pm 0.0017 \pm 0.0008$
	α	0.3088±0.0195+C	α	0.2794±0.0345±0.0113
ISGW2	f _K ⁺ (0) V _{cs}	0.7139±0.002、 0.0034	$f_{\pi}^{+}(0) V_{cd} $	0.1415±0.0016±0.0006
	r _{ISGW2}	1.6000±(.); ; ; ±0.0091	r _{ISGW2}	2.0688±0.0394±0.0124
Series.2.Par	f _K ⁺ (0) V _{cs}	0.717 - J)025±0.0035	$f_{\pi}^{+}(0) V_{cd} $	$0.1435 \pm 0.0018 \pm 0.0009$
	r ₁	±0.0864±0.0575	r ₁	-2.0365±0.0807±0.0260
Series.3.Par	f _K ⁺ (0) V _{cs}	0. 196±0.0035±0.0041	$f_{\pi}^{+}(0) V_{cd} $	0.1420±0.0024±0.0010
	r ₁	-2.3331±0.1587±0.0804	r ₁	-1.8434±0.2212±0.0690
	r ₂	3.4223±3.9090±2.4092	r ₂	-1.3871±1.4615±0.4677

Projections on Form Factors f^{K(\pi)}_+(q^2)

Comparisons of Form Factors

Experimental data calibrate LQCD calculation

Summary

- The BESIII (semi)leptonic analyses are based on 2.92 fb⁻¹ collected at ψ (3770).
- The leptonic results for the branching fraction, decay constant and V_{cd} are a significant improvement over previous analyses.
- Similarly, the new semileptonic results, $D^0 \rightarrow K/\pi e v$, are the world's highest precision measurements.
- Say something about D+ coming soon.
- Lattice results are consistent with the data.