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With the discovery of the Higgs boson the Standard Model has become a complete and comprehen-
sive theory, which has been verified with unparalleled precision and in principle might be valid at all
scales. However, several reasons remain why we firmly believe that there should be physics beyond
the Standard Model. Experiments such as the LHC, new B factories, and earth- and space-based
astro-particle experiments provide us with unique opportunities to discover a coherent framework
for many of the long-standing puzzles of our field. Here we explore several significant interconnec-
tions between the physics of the Higgs boson, the physics of flavour, and the experimental clues we
have about dark matter.
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1. PREFACE1

It is interesting to explore the various interconnections
between the physics of the Higgs boson, the physics of
flavour, and the experimental clues we have about dark
matter. All of these fields are at the boundary of the
Standard Model, and many connections between them
exist. With the discovery of the Higgs boson the Stan-
dard Model has become a complete and comprehensive
theory, which has been verified with unparalleled preci-
sion and in principle might be valid at all scales. How-
ever, several reasons remain why we firmly believe that
there should be physics beyond the Standard Model. Ob-
servational facts, such as the strong evidence for existence
of dark matter and dark energy, neutrino masses and the
cosmic matter-antimatter asymmetry are not explained
by the Standard Model. Also, we are lacking a com-
pelling theory of flavour, which can explain the striking
patterns and hierarchies seen in the spectrum of fermion
masses and mixings. The possibility of a unification of
the fundamental forces (including gravity) is still to be
proved or disproved. In low-energy Supersymmetry, new
particles near the TeV scale are required for a success-
ful unification of the gauge coupling constants. A pos-
sible signature of unification at a scale around 1016 GeV
would be proton decay mediated by new heavy particles.
When the Standard Model comes in touch with much
more massive particles related to a new energy scale, the
gauge hierarchy problem becomes a twofold puzzle. We
are not only concerned with the origin of scales MGUT or
MPlanck much larger than the electroweak scale, but also

1 Contributing authors: Matthias Neubert and Giulia Ricciardi

with the stabilization of the Higgs mass near the weak
scale at any order in perturbation theory. A crucial ques-
tion in this context in that about the fundamental mech-
anism behind electroweak symmetry breaking. Precision
measurements of the properties of the discovered Higgs
boson, including its couplings to the gauge bosons and
fermions of the Standard Model, may open a portal to
discover some physics beyond the Standard Model, and it
is not unlikely that this new physics might be connected
to the dark sector of the Universe.

Indeed, many research themes exploring the physics
beyond the Standard Model are related to several aspects
within a global approach, involving electroweak symme-
try breaking, flavour phenomena and dark matter. Triv-
ial examples are the connections between dark matter
and electroweak symmetry breaking given by the possi-
bility of the existence of weekly interacting massive par-
ticles (WIMPs) or by searches for dark matter at collid-
ers. Experiments such as the LHC, new B factories, and
earth- and space-based astro-particle experiments pro-
vide us with unique opportunities to discover a coherent
framework for many of the long-standing puzzles of our
field. Hopefully, some signatures of new physics will be
identified in the coming years, and it will then be impor-
tant to delineate the ensuing implications. Here, some of
these interdisciplinary aspects will be examined.

2. SUSY PROSPECTS FOR THE NEXT LHC
RUN AND DARK MATTERN

2.1. Introduction2

After the discovery of a light scalar of ∼ 125 GeV with
all the right features to represent the Higgs boson of the
Standard Model (SM), the central open issue related to
the electroweak symmetry breaking remains its natural-
ness. Namely, is such 125 GeV scalar mass resulting from
a purely accidental and extremely precise tuning of pa-
rameters at the far ultraviolet scale (maybe, the grand
unification scale or the Planck scale) or is it the fruit of
some yet unknown dynamics active at the electroweak
(ELW) scale?

If we take the latter road, namely we invoke some dy-
namics to stabilise the ELW symmetry breaking scale,
then quite a few options have been widely scrutinised
in the literature: supersymmetry (SUSY), compositeness
for the Higgs boson, extra-dimensions, quantum gravity
at the ELW scale are some of the natural solutions that
attracted most attention. Undoubtedly, SUSY, or, more
precisely, low-energy SUSY sticks out among them as
that which succeeded to produce complete particle model
extensions of the SM to be tested in high-energy and
high-intensity facilities.

2 Contributing author: Antonio Masiero
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Such plus of low-energy SUSY has proven to become
along the years also its major drawback. The failure of
many experiments conducted at several facilities world-
wide, in particular those at LEP and LHC at CERN,
to, directly or indirectly, reveal the presence of SUSY
partner particles has severely undermined the initial en-
thusiasm surrounding SUSY at the solution of the gauge
hierarchy problem at its start in the 80s.

Indeed, already at the end of the LEP activity, and
even more with the advent of LHC, it has become clear
that some level of tuning of the parameters (i.e.. of un-
naturalness) has to be inherently present in any kind of
natural dynamics stabilising the Higgs mass at the O(100
GeV) scale. The reason is quite simple: barring very spe-
cific (and contrived) constructions one can generally ex-
pect that in order to stabilise the Higgs mass at O (100
GeV) the new dynamics should be produced by parti-
cles and, in general, new physics beyond the SM (BSM)
present at that energy scale. However, all the searches for
such O(100 GeV) new physics have been so far unsuccess-
ful both in flavour experiments (in particular those con-
cerning GIM-suppressed flavour changing neutral current
and CP violating process) and in high-energy searches.

As we said above, low-energy SUSY extensions of the
SM were particularly suitable to be tested by all such
experiments looking for deviations from the SM physics
given the fact that they could give rise to concrete, com-
plete physics models. Roughly speaking, after the first
run of the LHC (at 7 and 8 TeV), one should conclude
that coloured SUSY particles should be heavier than 1
TeV, whilst for SUSY particles with only electroweak in-
teractions the bound remains in the hundreds of GeV
range. Though, important caveats exist: the most re-
markable one, concerns the scalar partner of the top
quark, the stop, which could still be much lighter that
1 TeV in very peculiar realizations of the SUSY particle
spectrum.

The value of the Higgs mass which was experimentally
found contributed to add to the above mentioned ten-
sion between a dynamical explanation of the ELW scale
and the request of having a natural way of achieving its
stabilisation. Indeed, in the minimal SUSY extension
of the SM, the MSSM (Minimal Supersymmetric Stan-
dard Model), where the minimal number of superfields
strictly needed to supersymmetrise the SM is introduced,
the lightest scalar boson (corresponding to the Higgs SM)
is predicted to have a mass of the order of that of the Z
boson at the tree level, i.e. before taking into account the
radiative correction. The value of 125 GeV can be ob-
tained for the lightest scalar in the MSSM only in a very
restricted area of the SUSY parameters (indeed, about
135 GeV is the maximum possible value which can be
obtained exploring the entire huge parameter space of
the MSSM).

Still remaining inside the ”minimality” of the SUSY
version of the SM, there is ample freedom in constructing
the specific SUSY model. Indeed, the class of SUSY mod-
els respecting such ”minimality” criterion, the MSSM

have O(100) free parameters. A reasonable restriction on
such enormous parameter space is i) to go from O(100)
to O(10) parameters regulating the relevant masses and
mixings of the SUSY particle spectrum and ii) impose
that the values of such free parameters lead to the con-
struction of phenomenologically viable models. These
phenomenologically allowed MSSM (denoted by pMSSM)
couple minimality with more freedom than in the con-
strained MSSM. The pMSSM will be discussed in what
follows.

Adding rather drastic assumptions (for instance, uni-
versality of the gaugino and sfermion masses) to the min-
imality of the MSSM, one can construct new versions of
the MSSM with a much smaller number of free param-
eters . For instance, the so-called Constrained MSSM
(CMSSM) or the minimal SUGRA model, have only 4 or
5 free parameters. The value of the Higgs mass of 125
GeV, combined with all the other existing constraints,
makes it even more difficult to construct phenomenologi-
cally viable very constrained versions of the MSSM. Even
the MSSM can still survive, but at the price of going to
a very restrictive corner of the SUSY parameter space.
The critical point in minimal SUSY extensions of the SM
where the Higgs scalar sector is represented by two iso-
doublet Higgs superfields is the absence of quartic scalar
terms with a free parameter, i.e. the analogue of the
λH4 term of the SM Higgs potential.

Thats why great interest has arisen about non-minimal
SUSY extensions of the SM where it is possible to have
such quartic terms. The most studied class of such non-
minimal MSSM adds to the above two Higgs superfield
doublets also a singlet scalar N. Coupling N to the men-
tioned two Higgs doublets can yield the quartic Higgs
term allowing for a larger SUSY Higgs mass at tree level.
Section 2.2 will discuss the phenomenology of such a
non-minimal SUSY model. Interestingly enough, such a
model can more easily pass all the usual high-nergy and
high-intensity tests. The severe constraints that have to
be applied on the SUSY parameter space of the mini-
mal case can now be relaxed; the price to pay is some
degree of further complication of the model with the in-
troduction of a new singlet superfield whose presence is
not dictated by the mere request of supersymmetrizing
the SM.

The main reason motivating the introduction of low-
energy SUSY in the phenomenological arena at the be-
ginning of the 80s was the search for a dynamics ensuring
an ultraviolet cutoff at the ELW scale for the SM. Soon
after the construction of the first low-energy SUSY re-
alizations, it was realized that the presence of the SM
SUSY partners at the ELW scale was entailing two con-
sequences of utmost relevance: grand unification, i.e. a
common value of the electroweak and strong gauge cou-
pling constants, was successfully achieved and an inter-
esting candidate for cold dark matter (CDM) was emerg-
ing from the SUSY particle spectrum. Indeed, such two
relevant implications of low-energy SUSY turn out to be
somewhat linked one to the other. Asking for the super-
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symmetrization of the SM encounters a major block: the
presence of ELW scale SUSY particles naturally yields a
unbearably fast proton decay. To ensure baryon number
conservation an additional discrete symmetry has to be
imposed, the so-called R parity, distinguishing ordinary
particles from their superpartners. Then, proton decay
proceeds through the exchange of super-heavy SUSY par-
ticles present at the above mentioned grand unification
scale and a sufficiently long proton lifetime can be en-
forced. But the presence of R yields another major con-
sequence: the lightest SUSY particle cannot decay and
if it is neutral and interacts only weakly, it can repre-
sent a Weakly Interacting Massive Particle (WIMP), an
interesting candidate of CDM.

In Section 2.3 we consider the particularly interest-
ing case where such SUSY WIMP is represented by the
lightest neutral SUSY fermion, the so-called lightest neu-
tralino.

Such a DM candidate can be searched for in three dif-
ferent ways: direct searches through the recoil of tar-
get nuclei hit by the cosmic neutralino, indirect searches
through the study of products (mainly gamma rays, an-
tiparticles and neutrinos) of neutralino annihilation and
its production in collisions at the LHC. The combination
of the important new bounds coming from these search
roads with the constraints on the SUSY parameter space
from SUSY particle searches in the first 7 and 8 TeV
LHC run is providing a new interesting picture of the
DM SUSY issue.

The next subsections offer an insight on where we stand
on the issue of low-energy SUSY, in particular after the 8
TeV LHC run. They show that the possibility of coping
with the gauge hierarchy problem through the dynam-
ics of a low-energy SUSY extension of the SM is still
well alive, although we are likely to be forced to give up
the simplest SUSY model constructions of the last three
decades. The newly started run of LHC at 13-14 TeV will
be able to shed precious light on the existence of SUSY
at the ELW scale. As shown in this Section, if not finding
the much sought for SUSY particles, at least such new
LHC run, together with the relentless (direct and indi-
rect) searches for dark matter, are going to very strongly
define the space of phenomenologically viable low-energy
SUSY models.

2.2. Supersymmetry and naturalness3

If one firm conclusion can be drawn examining the
outcome of LHC-I, it is that our concept of naturalness
is becoming more and more at odds with experiments.
Although no firm theorem about naturalness and fine
tuning can be stated, the physical implications of the
problem can be clearly stated: whenever an elementary

1 Contributing author: Enrico Bertuzzo

scalar is present in a theory, radiative corrections tend
to push its mass to values only a loop factor below
the theory’s cut off (provided the scalar interacts with
particles living at the cutoff). It is then clear that
light scalars imply either a low cut off, or the need of
precise cancellations between the different contributions
entering in the determination of the physical scalar
mass. The more precise these cancellations, the more
the theory is tuned. With the Higgs boson discovery the
SM is now complete and self consistent. The problem
however persists, since we can expect gravity to play
a role at very short distances of order the Plank mass:
what is then keeping the Higgs boson mass at 126 GeV,
i.e. 16 orders of magnitude smaller than the Plank scale?

A possible solution is to make the SM supersymmet-
ric: the unification of scalars and fermions in a unique
symmetry multiplet allows to reduce the mass sensitivity
to the cut off. In this way, the scalar mass can be much
lighter than the cut off itself. The immediate drawback
is that no unbroken SUSY multiplet has been observed
in nature, signaling that SUSY must be broken. SUSY
breaking reintroduces the problem back: the scalar mass
is now quadratically sensitive to the scale of SUSY break-
ing. The hope now is that such a scale can be low enough
to avoid the fine tuning problem.

Since no SUSY partners have been observed at the
LHC, however, the conclusion that can be drawn is rather
firm: in the minimal SUSY extension of the SM (MSSM),
a fine tuning parameter of at least Σv ' 100 is needed [1]
(see Eq. 4 below for the definition of Σv) in order to ac-
commodate for mh = 126 GeV. The MSSM is thus tuned
at best at the percent level. Of course it may well be that
this is the level at which nature is tuned; on the other
hand, such a large level of tuning can be seen as a moti-
vation to seek for more natural SUSY extensions of the
SM. As we are going to see, one of the general prices to
pay is minimality (in the sense of particle content and/or
symmetry structure).

In what follows, we will discuss two conceptually differ-
ent frameworks (without any attempt at completeness):
the well known case of the NMSSM (based mainly on [2]),
in which the fine tuning is improved raising the Higgs
boson mass at tree level, and SUSY models with Dirac
Gauginos (based on [3]), in which instead the fine tuning
is ameliorated via additional loop contributions to the
Higgs boson mass.

2.2.1. Framework 1: NMSSM

By definition, the NMSSM is obtained from the MSSM
by adding a chiral singlet S to the particle content.
Among the many supersymmetric interactions that can
be written between S and the Higgs doublet, we will fo-
cus on the case in which all the superfields are charged
under a Z3 symmetry. In this so called “scale invariant”
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NMSSM the relevant superpotential is

W = λSHuHd +
k

3
S3 , (1)

while the soft SUSY breaking potential is given by

VSSB = m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2

+
(
aλSHuHd +

ak
3
S3 + h.c.

)
. (2)

The couplings λ and k will be required to be perturbative
up to the cutoff scale Λmess, which will be taken to be
relatively low, in the range Λmess = 20 − 1000 TeV.
The scale Λmess could be associated with the mass of
messengers fields that communicate SUSY breaking to
the visible sector, or may be interpreted as the scale
at which the NMSSM fields emerge from an underlying
strong sector.

The improved naturalness is due to the additional tree
level quartic coupling for the Higgs doublets produced
by the singlet F -term. Indeed, once Hu and Hd ac-
quire respectively vevs vu and vd, the mass of the Higgs-
like scalar (i.e. the scalar acquiring the electroweak
vev v, defined as usual in terms of tanβ = vu/vd as
h = cosβH0

d + sinβH0
u) is given by

m2
h = m2

Z cos2 2β + λ2v2 sin2 2β , (3)

so that for moderate tanβ it can be raised above the
MSSM limit, reducing the sensitivity of the physical mass
to loop corrections.

Let us notice that mh is not the mass of the lightest
physical scalar: in general important mixing terms with
the singlet and the orthogonal doublet are present. As a
consequence, two physical quantities may require a rele-
vant tuning to be kept stable under variation of the un-
derlying parameters: the EW scale v (connected to mh)
and the physical lightest scalar mass ms1, which takes
into account the mixing between the Higgs-like scalar and
the other scalars.

Following [2], we will use the usual logarithmic measure
for the fine tuning in both cases:

Σv ≡ max
i

∣∣∣∣d log v2

d log ξi

∣∣∣∣ , Σh ≡ max
i

∣∣∣∣d logm2
s1

d log ξi

∣∣∣∣ . (4)

For Σv the relevant parameters (to be evaluated at the
scale Λmess) are ξi =

{
m2
Hu

, m2
Hd

, m2
S , λ, k, aλ, ak,

m2
Q3

, m2
u3

, m2
d3

, At, Ab, M1, M2, M3}, while for Σh the

list reads ξi = {λ , k, aλ, ak, m2
Q3

, m2
u3

, m2
d3

, At, Ab,

M1, M2, M3}. In the latter case, the soft masses m2
Hu

,

m2
Hd

and m2
S have been traded for the vevs vu, vd and

vS using the minimum equations, and the vevs are kept
fixed since the associated tuning on v is already taken
into account in Σv.

In the computation of the fine tuning, the 1-loop
Coleman-Weinberg (CW) potential is used, with renor-
malization scale fixed at msoft =

√
mQ3

mu3
in order to

make the approximation more scale independent. The
RGEs taking into account the running from Λmess down
to msoft are solved in the leading log approximation;
however, since the λ and k couplings run quickly, in their
case the full numerical solution is used. To make evident
that the parameters entering in the CW potential (and
hence the minimum conditions) are computed at msoft,
with Λmess feeding through the RG equations, we can
rewrite Eq. 4 using explicitly the chain rule:

Σv = max
i

∣∣∣∣∣∣
∑
j

ξi(Λmess)

v2

dv2

dξj(msoft)

dξj(msoft)

dξi(Λmess)

∣∣∣∣∣∣ (5)

Considering that by construction the two measures of fine
tuning are independent, we choose to quantify the total
tuning with the product

Σtot = ΣvΣh . (6)

We present in Fig. 1 the dependence of the separate
measures Σv and Σh on λ. All the points shown satisfy
the following phenomenological requirements (see [2] for
details):

• All the LHC measurements on RX =
σ(h)×BR(h→X)

σ(hSM )×BR(hSM→X) with the exception of the

Rγγ data;

• limits on the decays of heavier CP even scalars;

• latest SUSY searches at LHC8;

• electroweak precision measurements;

• flavour constraints (mass differences in the B sys-
tem, charged and neutral B decays);

• (considering an LSP neutralino) not overclosure of
DM density (WMAP7) and direct detection limits.

As can be seen, large values of λ are preferred by Σv
but are disfavored by Σh. This can be understood as
follows: large values of λ help to reduce the derivative
dv2/dm2

Hu
(msoft) appearing in Eq. 5, reducing in this

way the sensitivity to radiative corrections. On the other
hand, large values of λ increase too much the tree level
mass of the Higgs-like scalar, so that a tuning among
parameters is needed to obtain the correct mass mixing to
bring it down to 125 GeV. 2 Putting all together, the neat
result is that the minimum amount of tuning is obtained
for λ ' 1 and a low cutoff scale, Λmess = 20 TeV (see
Fig. 1, lower panel). In particular, we can see that Σtot &
10, 20, 40 for Λmess = 20, 100, 1000 TeV, respectively.

The consequences of the previous results on the “most
natural” sparticle spectrum that we can expect at the

2 See [4] for an example of models in which the Higgs boson mass
is basically untuned.



6

FIG. 1: Dependence of dv2/dm2
Hu (the quantity feeding into

Eq. 5, upper panel), Σh (middle panel) and of the combined
tuning ΣvΣh (lower panel) on λ. The black, orange and yellow
points correspond to Λmess = 20, 100, 1000 TeV, respectively.
The green, blue and red points correspond, for fixed Λmess =
20 TeV, to a combined tuning Σtot better than 5%, between
1% and 5% and worse than 1%, respectively. [2]

LHC is summarized in Fig. 2 for different values of the
combined tuning.

As expected, when we insist on naturalness many par-
ticles are expected to be below the TeV (usually inde-
pendently on tuning), even in the colored sector. Notice
however that, unlike what happens in the MSSM, the
lightest stop can have a mass slightly above 1 TeV with-
out a significant detriment in the tuning, and the same

FIG. 2: Particle spectrum with Λmess = 20 TeV. The green,
blue and red points correspond to a combined tuning better
than 5%, between 1% and 5% and worse than 1%, respec-
tively. [2]

is essentially true also for the gluino.
As expected, for small total tuning the colored sector

tends to be generically lighter, although there are also
light colored particles in the more tuned region.

2.2.2. Framework 2: Dirac Gauginos and R-symmetry

We turn now to a different extension of the MSSM, in
which additional matter is added to obtain Dirac instead
of Majorana Gaugino masses.

The mechanism behind the improved naturalness is
twofold: Dirac gaugino masses are generated through su-
persoft operators, which give only finite contributions to
scalar masses [5]. In particular, the gluino contribution
to the Higgs mass is less important than in the MSSM
case, relaxing the naturalness bound. Moreover, the ad-
ditional particle content needed to build Dirac gaugino
masses can give sizable loop contribution to the Higgs
boson mass, diminishing in this way the sensitivity to
the individual contribution.

It must be stressed, however, that scalar masses for
the adjoint scalars are not supersoft. Indeed, they con-
tribute at the two loop level to the RGEs of the sfermion
masses [6, 7]. In particular, there are regions in the pa-
rameter space in which the squark masses become tachy-
onic, breaking charge and color. In addition, the masses
of the CP-odd scalars may become tachyonic already at
tree level, triggering again charge and/or color breaking.
In what follows, we will always restrict to regions in pa-
rameter space in which this is not the case.

Models with Dirac gauginos are also interesting from a
purely phenomenological point of view: first of all, squark
pair production is suppressed at the LHC due to the
absence of Majorana mass insertions, softening the ex-
perimental limits [8]. Moreover, Dirac gaugino masses
are compatible with a global U(1)R symmetry, which
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Active (R = 0) Inert (R = 2) Reference
Hu, Hd Ru, Rd [11]

Hu, L̃ Rd [12]
Hu Rd [15]

L̃ × [14]

TABLE 1: Examples of R-symmetric Higgs sectors.

would be otherwise broken by the Majorana mass. The
R-symmetry can be used as an alternative to R-parity to
forbid operators leading to proton decay [9, 10], but has
far richer consequences. Indeed, the absence of A-terms,
µ term and Majorana gaugino masses has a beneficial
effect on the SUSY flavour problem [11].

A peculiar aspect of R-symmetric models is the Higgs
sector particle content. Various possibilities are summa-
rized in Table 1. In particular, to avoid spontaneous R-
symmetry breaking, the scalars charged under U(1)R are
all assumed to be inert, while the active doublets (singlets
under U(1)R) take part in electroweak symmetry break-
ing. Let us notice that in this framework it is possible
to have a combination of sneutrinos playing the role of
H0
d [12] 3, and it is even possible to eliminate completely

any Higgs boson from the spectrum, with only the sneu-
trinos taking part in EWSB [14].

Let us now consider in detail the case of the Super-
symmetric One Higgs Doublet Model (SOHDM) [15]. As
noted in [3], this is also representative of the large tanβ
limit of the models presented in [11, 12]. The superpo-
tential is given by

W ⊃
√

2λTHuTRd + λSSHuRd + µHuRd (7)

where S and T are the adjoint superfields associated with
U(1)Y and SU(2)L, respectively. Let us recall that we
will assume 〈R0

d〉 = 0 in order to avoid spontaneous
U(1)R breaking. The main features of the scalar spec-
trum are summarized in the following:

• any NMSSM-like tree-level enhancement is forbid-
den by the R-symmetry, so that as in the MSSM
the mass of the Higgs-like scalar is given by

m2
h = m2

Z cos2 2β (8)

• once all the neutral fields get a vev (including the
singlet and the neutral triplet), there is a non van-
ishing mixing between the Higgs-like boson and the
additional states, so that the lightest eigenvalue has
a mass which is lowered by eigenvalue repulsion.
An approximate expression, valid in the limit in

3 In this framework also neutrino masses can be accommo-
dated. [13]
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FIG. 3: Higgs boson mass mh = 125 GeV (black and green
thick lines) and fine-tuning parameter ∆ (thin lines), as a
function of MD = MW̃ = MB̃ and madj = mT = mS = mRd ,
for BT = BS = − 1

3
(m2

Adj + M2
D). We fix λT = 1 = −λS .

The upper (black) curve refers to a common stop mass of
mstop = 300 GeV, the lower (green) curve to mstop = madj .
Upper panel: µ = 200 GeV; Lower panel: µ = 300 GeV. The
red region is allowed at 95% C.L. by EWPM (T < 0.2.)

which all the Dirac masses are smaller than the
scalar adjoint masses, is given by

(m2
lightest)tree ' m2

Z − v2 (−
√

2gMW̃+2λTµ)2

m2
TR

− v2 (
√

2g′MB̃+2λSµ)2

m2
SR

,
(9)

where m2
TR

= 4MW̃ +m2
T +2BT and m2

SR
= 4MB̃+

m2
S +2BS are the masses of the real adjoint scalars

before EWSB.
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At the loop level, the relevant contributions are given by:

• Stop contributions, as in the MSSM [16]:

V CWHiggs ⊃ 1
4

[
3

16π2 y
2
t

(
y2
t − m2

Z

2v2

)
log M2

m2
t

+
3y4t

(16π2)2

(
3
2y

2
t − 32πα3(mt)

)
log2 M2

m2
t

]
h4
u ,

(10)
with M a common stop mass scale;

• Adjoint scalars and fermions contributions. The
complete expression can be simplified in two limit-
ing cases, according to the hierarchy between the
Dirac mass scale MD and the scalar adjoint mass
scale madj :

1. µ�MD � madj :

V CWHiggs ⊃ 1
4

[
5λ4
T+2λ2

Tλ
2
S+λ4

S

16π2 log
m2
adj

M2
D

+
λ2
Sλ

2
T

16π2

]
h4
u ,

(11)

2. madj �MD

V CWHiggs ⊃ 1
4

[
−5λ4

T−λ
4
S+2λ2

Tλ
2
S

32π2 log
M2
D

Q2

+
λ2
Tλ

2
S

8π2

]
h4
u

(12)

Some comments are now in order. First of all, in the
region in which the additional contributions are compa-
rable to the stop one, |λT | ' |λS | ' 1, we expect the
last contribution (madj � MD region) to be negative.
The hierarchy MD � madj is thus preferred to increase
the Higgs boson quartic. Moreover, in the stop case
there is an important negative two loop contribution
proportional to α3, which reduces the effectiveness of the
stop contribution. On the contrary, we do not expect
the two loop contribution in the singlet and triplet case
to be so important (since they are not proportional to
α3), making more efficient the boost to the Higgs quartic.

There is however a potential drawback: λT and λS
break custodial symmetry, so that we need to worry
about potentially large contribution to Electroweak
Precision Measurements (EWPM) for |λT | ' |λS | ' 1.
We included this constraint in our analysis.

The results of the full contributions to the Coleman-
Weinberg potential are presented in Fig. 3, as a function
of a common Dirac gaugino mass MD and of a common
adjoint scalar mass madj . We use two different values of
µ: µ = 200 GeV (upper panel) and µ = 300 GeV (lower
panel). The green (black) lines represent the contour of a
125 GeV Higgs for mstop = madj and mstop = 300 GeV,
respectively. The scalar mass of the inert doublet is fixed
to mRd = madj . The thin black contours show the values
of the fine tuning parameter Σv for Λmess = 20 TeV,

while the red region is the one allowed at 95% C.L. by
electroweak precision data.

Let us comment on two counterintuitive features of
the results: to achieve the correct Higgs mass with less
tuning, heavier stops and heavier Higgsinos are needed.
This can be understood as follows: for the upper (black)
curves, the lightness of the stops is such that the main
boost to the Higgs quartic comes from the adjoint and
inert fields. On the contrary, for the lower (green) curves
the stop boost to the Higgs quartic gives a contribution
comparable to those of the adjoint scalars. However,
as shown in [3], there is no worsening in the tuning for
m2
s̃top = m2

T = m2
Rd

. In addition, the “collective” quartic
enhancement in the lower curves allows for smaller soft
SUSY breaking masses, implying less tuning. Turning
to the µ parameter, we stress that compatibility with
EWPM for lighter Higgsinos require heavier gauginos
(i.e. larger MD). Considering that from the shape of the
Higgs mass curves in Fig. 3 it is clear that this requires
heavier scalars to get mh = 125 GeV, a worsening in the
tuning is expected. This is indeed the case: for µ = 300
GeV compatibility between mh = 125 GeV and EWPM
is achieved for madj & 800−1100 GeV (for mt̃ = madj or
300 GeV, respectively), i.e. when the sensitivity is still
dominated by µ. On the contrary, for µ = 200 GeV the
scalar masses are pushed up to madj & 1500− 1900 GeV
(again for mt̃ = madj or 300 GeV, respectively), in a re-
gion in which the soft SUSY breaking masses dominate
the tuning.

2.3. Supersymmetric dark matter4

The lightest neutralino in the MSSM constitutes a pro-
totype candidate for cold dark matter, provided R-parity
is conserved. Here we review the constraints on neu-
tralino dark matter from different sectors, namely flavour
physics, Higgs and SUSY LHC searches and dark matter
detection experiments.

2.3.1. Dark Matter observables

Dark matter searches can be divided into four different
categories.

First, cosmological observations lead to the determina-
tion of the average dark matter density. This density can
then be compared to the neutralino relic density, which
is computed assuming the supersymmetric particles have
been initially in thermal equilibrium, then annihilated
and coannihilated with other supersymmetric particles
until the freeze-out period, leaving only the stable neu-
tralino to constitute dark matter. Hence, the relic density
observable is sensitive to the annihilation of the lightest

4 Contributing authors: Alexandre Arbey and Farvah Mahmoudi
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neutralinos as well as the coannihilation of the other light
supersymmetric particles to SM particles. The relic den-
sity calculation is also sensitive to the properties of the
Universe close to the time of freeze-out, which is generally
considered to be radiation-dominated. The comparison
with the dark matter density relies on the fact that the
cosmological dark matter is composed of one single com-
ponent. Alternative cosmological scenarios could how-
ever strongly alter the computed relic density [17–23].

Second, dark matter is clustered in halos around galax-
ies, and the solar system is travelling across the Milky
Way halo. Since dark matter particles interact very
weakly with matter, they generally cross through matter
without interaction, but it is still possible that dark mat-
ter particles scatter with nuclear partons inside atoms.
This is the principle of direct detection experiments,
which aim to measure the recoil energy deposited by the
interaction of neutralinos with nuclei of a gas or crys-
tal, in order to reconstruct the scattering cross section of
dark matter with protons and neutrons. The main un-
certainty for this observable comes from the local density
and velocity of dark matter close to the Earth.

Third, dark matter particles can annihilate into
SM particles, which can modify the flux of photons,
positrons/electrons, proton/anti-protons, etc., measured
around Earth. The dark matter indirect detection exper-
iments probe the cosmic ray fluxes, and detect deviation
generated by dark matter annihilation. The clearest dark
matter signal would be a definite line in the gamma ray
spectra. Here the two main sources of uncertainty in ad-
dition to the astrophysical backgrounds are the density
of dark matter in the annihilation region, and the prop-
agation of the charged particles.

Finally, LHC can also probe the dark matter sector,
through direct pair production of neutralinos. However,
such processes would be completely invisible at the detec-
tors. A hard single jet emitted by initial state particles
can be used as a marker of the production of a pair of
neutralinos, resulting in monojet signatures.

2.3.2. Nature of the neutralino

The neutralino can be a pure state of bino, wino or
higgsino, or a mixed state, leading to diverse properties.

A pure bino neutralino has its couplings to the Z and
Higgs bosons suppressed. For this reason, it would be
very difficult to detect it in direct and indirect detection
experiments, as well as at the LHC. Moreover, because
of the low annihilation rate, the relic density is expected
to be too large. Therefore, to retrieve the observed dark
matter density, another slightly heavier supersymmetric
particle, such as a stau or a squark is required, that can
coannihilate with the neutralino, in order to increase the
effective (co-)annihilation rate.

A pure wino or higgsino has also couplings to the Z
and Higgs bosons suppressed, to a lesser extent, leading
to difficult direct and indirect detections. Concerning

FIG. 4: Relic density as a function of the neutralino mass, for
different compositions of the neutralino.

the relic density however, a pure wino is accompanied
with a chargino, and a pure higgsino with a second neu-
tralino and a chargino. For this reason, even if the other
supersymmetric particles are much heavier, the correct
amount of relic density can be achieved naturally for a
wino of ∼2.3 TeV, or a higgsino of ∼1.2 TeV (see Fig. 4).

For mixed state neutralinos, the couplings to the Z and
Higgs bosons can be large, leading to large scattering or
annihilation cross sections, making a direct or indirect de-
tection more likely. In addition, the correct dark matter
relic density can be achieved even in absence of coannihi-
lations. These scenarios however are becoming severely
constrained by the direct detection experiments.

Fig. 4 shows the distribution of the relic density for
the different types of neutralinos. The relic density is
expected to be close to the observed cold DM density,
Ωh2 ∼ 0.11 [24, 25]. In general, the relic density in-
creases with the neutralino mass. For a pure bino, the
relic density is often too large, and only coannihilations
can help reaching the right DM density. For higgsino
and wino states on the contrary, the relic density is too
small for light neutralinos, because of the coannihilation
with the associated chargino or neutralino. For mixed
states, the correct relic density can be obtained for any
neutralino mass.

2.3.3. Constraints on the MSSM parameters

In the following, we consider the phenomenological
MSSM with 19 parameters, which is the most general
MSSM model with R-parity and CP conservation, and
Minimal Flavour Violation at the weak scale [26]. This
model is flexible enough to allow for general studies of
most of the MSSM neutralino dark matter scenarios, in
particular because M1, M2 and µ, the bino, wino and hig-
gsino mass terms respectively, are independent, contrary
to the usual constrained scenarios. The effect of CP-
violation in the pMSSM has been recently studied in [27].
Because of the large number of parameters only a com-
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Parameter Range

tanβ [1, 60]
MA [0, 3500]
M1 [-3500, 3500]
M2 [-3500, 3500]
M3 [0, 3500]

Ad = As = Ab [-10000, 10000]
Au = Ac = At [-10000, 10000]
Ae = Aµ = Aτ [-10000, 10000]

µ [-3500, 3500]
MẽL = Mµ̃L [0, 3500]
MẽR = Mµ̃R [0, 3500]

Mτ̃L [0, 3500]
Mτ̃R [0, 3500]

Mq̃1L = Mq̃2L [0, 3500]
Mq̃3L [0, 3500]

MũR = Mc̃R [0, 3500]
Mt̃R

[0, 3500]
Md̃R

= Ms̃R [0, 3500]

Mb̃R
[0, 3500]

TABLE 2: pMSSM parameter ranges (in GeV when applica-
ble).

bination of experimental analyses from different sectors
can lead to strong constraints. In particular, we consider
limits from flavour physics, Higgs physics, dark matter
searches and LHC supersymmetric particle searches. In
the following, the pMSSM parameters are varied in the
ranges given in Table 2, following the methodology of
[28, 29] to impose constraints from the above-mentioned
sectors.

Flavour physics observables, such as rare decays, can
impose stringent constraints. In particular, LHCb and
CMS have observed for the first time the decay Bs →
µ+µ− [31, 32]. This observable is particularly sensitive
to tanβ and the mass of the CP-odd Higgs, MA [33].
Complementary information can also be obtained from
the branching fraction of b → sγ and the angular ob-
servables of B → K∗µ+µ−, which are very sensitive to
tanβ and the chargino and stop masses [30]. Imposing
flavour constraints restricts tanβ to smaller values, and
the CP-odd Higgs and stop masses to larger values. This
is illustrated in Fig. 5, where the pMSSM points are pro-
jected on the (MA, tanβ) (upper panel) and (Mt̃1

,MA)
parameter planes. We see that the region with tanβ > 40
and MA < 600 GeV is strongly constrained, and the CP-
odd Higgs and lightest stop masses cannot be simulta-
neously large, irrespectively of tanβ. In addition, since
charginos are involved in these flavour decays at loop-
level, constraints on the M2, µ and tanβ parameters can
be deduced, leading to indirect constraints on the DM
sector.

The discovery of a Higgs boson at the LHC provides
also very strong constraints on the MSSM. The lightest
CP-even Higgs boson is generally considered as the dis-

FIG. 5: Constraints from a combination of flavour observables
at 68% and 95% C.L. in the (MA, tanβ) (upper panel) and
(Mt̃1

,MA) (lower panel) pMSSM parameter planes [30].

FIG. 6: Lightest Higgs mass as a function of Xt/MS [34].
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FIG. 7: Distributions of the pMSSM points in the (Mt̃1
, Xt)

(upper panel) and (Mb̃1
, Xb) (lower panel) parameter planes.

The black dots show the accepted pMSSM points, those in
dark (light) green the points compatible with the observed
mass and rate constraints at 90% (68%) C.L.[35].

covered state. Its mass is given at the one loop level by

M2
h ≈ M2

Z cos2(2β) (13)

+
3 m̄4

t

2π2v2 sin2 β

[
log

M2
S

m̄2
t

+
X2
t

M2
S

(
1− X2

t

12M2
S

)]
,

where MS is the SUSY breaking scale, defined as the
geometric average of the two stop masses

MS =
√
mt̃1

mt̃2
(14)

and Xt = At − µ cotβ is the mixing parameter in the
stop sector. The requirement of Mh ∼ 125 GeV imposes
very strong constraints on the pMSSM parameter space.
In Fig. 6, the distribution of the predicted Higgs mass
is presented as a function of Xt/MS . To reach large Mh

values, a large MS , i.e. large stop mass, can be neces-
sary. This condition can be slightly relaxed in the case
of maximal mixing where |Xt| ≈

√
6MS .

In addition to the mass, the measured Higgs couplings
provide further constraints. In Fig. 7, the constraints
from the Higgs couplings on the stop and sbottom sectors
are presented. As can be seen, a large Xt is favoured, and

FIG. 8: Combination of the expected constraints on the
(MA, tanβ) parameter plane from the ττ , ZZ and bb chan-
nels after the LHC 8 TeV run. The colour scale gives the
fraction of pMSSM points excluded at each MA and tanβ
value. The contours show the limits corresponding to 95% or
more of the points excluded. The 90% C.L. constraint from
the Higgs signal strengths is also shown in the dotted green
line. The grey region has no accepted pMSSM points after
the BR(Bs → µ+µ−), DM direct searches and Higgs mass
constraints [36].

stop masses as light as 350 GeV can still be allowed. For
the sbottoms, no specific mixing is favoured.

Searches for heavier Higgs states also impose strong
constraints on the SUSY parameter space. In Fig. 8, we
analyse the constraints from heavy Higgs searches on the
pMSSM parameter points, in absence of flavour and dark
matter constraints. We show that the constraints from
the decay channels H → ττ , ZZ, bb̄ disfavour the region
at large tanβ and small MA. This region is also probed
by the flavour observables and in particular BR(Bs →
µ+µ−), and as we will see later by DM direct detection
results.

Direct searches for supersymmetry at the LHC set the
strongest bounds on the mass of the supersymmetric par-
ticles. However, since the LHC is a hadron collider, the
strong sector of the MSSM, i.e. the squark and gluino
sector, is more deeply probed, and the electroweak sec-
tor, which is more correlated to DM, is less constrained.
At the LHC, the main SUSY channels are searches with
jets or leptons plus missing energy in the final states.
However, if the mass splitting of the lightest neutralino
with the searched supersymmetric particle is small, these
searches lose their power, since most of the jets would
become soft. From the point of view of the detectors, a
DM particle is an invisible object which will leave no en-
ergy, leading to missing transverse energy or momentum.
When neutralinos are produced, it would be possible to
know that the process effectively occurs if an additional
single hard jet is produced, leading to a so-called mono-
jet signature. Nevertheless the production cross section
of two neutralinos and one hard jet is very small. Yet,
in case of production of a gluino or squark pair plus a
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FIG. 9: Fraction of pMSSM points excluded by the combi-
nation of the LHC jets/leptons+MET, monojet analyses and
direct DM searches in the (Mq̃,g̃,Mχ̃) parameter plane. The
lines give the parameter region where 68% of the pMSSM
points are excluded by the jets/leptons+MET searches alone
(grey line), the combination with monojet searches (yellow
line) and also with the direct DM LUX experiment (white
line) [37].

jet, if the squarks and gluinos decay into soft jets, such a
process would appear as a monojet [37, 38]. This gener-
ally happens when the mass splitting between the squark
or gluino and the lightest neutralino is small. For this
reason, monojet searches are complementary to the di-
rect searches. In Fig. 9, the constraining power of the
direct and monojet searches is demonstrated. Depend-
ing on the lightest neutralino mass, the masses of the
squarks and gluinos can be probed up to 1500 GeV by
the combination of the SUSY and monojet searches for
light neutralinos of . 100 GeV, while this value can be
reduced to less than 800 GeV for heavier neutralinos.

Finally, dark matter experiments can also impose very
strong constraints on the MSSM. Due to the large uncer-
tainties in the dark matter densities and in the propaga-
tion of cosmic rays, we do not consider here DM indirect
detection results. Imposing the dark matter density con-
straints leads to different conclusions on the nature of
the neutralino, as seen in Fig. 4. The dark matter direct
detection experiments further constrain the MSSM. The
XENON-100 [40] and LUX [41] collaborations currently
provide the most constraining limits on the neutralino-
nucleon spin-independent scattering cross sections. This
scattering cross section is sensitive in particular to MA

and tanβ, providing constraints complementary to the
BR(Bs → µ+µ−) and H → τ+τ−. This is illustrated
in Fig. 10. The additional constraint from LUX data
on the pMSSM is also superimposed in Fig. 9, with the
white line. In Fig. 11, the XENON-100 and LUX lim-
its are shown in the neutralino-nucleon scattering cross
section vs. neutralino mass plane. We see that a sub-

FIG. 10: Distribution of the pMSSM points in the (MA, tanβ)
parameter plane, the black points are excluded at 90% C.L.
by the LUX exclusion limit.

FIG. 11: Fraction of pMSSM points excluded by the combi-
nation of the SUSY and monojet searches in the (Mχ̃0

1
, σχ̃p)

parameter plane. The solid and dashed lines correspond to
the upper limits from direct detection experiments [37].

stantial fraction of the pMSSM points is excluded by the
LUX limits. Yet, many points with much smaller scat-
tering cross sections remain, corresponding to the pure
bino neutralinos, which have suppressed couplings to the
Z and Higgs bosons, leading to reduced cross sections.
In the future, the sensitivity of direct detection will im-
prove by large factors, as shown in Fig. 12. Even at the
neutrino background limit, there remains still a pMSSM
region compatible with the direct detection constraints.
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FIG. 12: Distribution of the pMSSM points in the (Mχ̃0
1
, σχ̃p)

parameter plane. The XENON-100 and LUX are providing
the current best limits, the black line is a projection for the
future LUX-ZEPLIN experiment, and the dashed line cor-
responds to the background due to the direct detection of
neutrinos [39].

2.4. Light neutralino and sbottom scenario

We now investigate the possibility that light sparticles
could have evaded the current experimental searches. It
is known in particular that scenarios with compressed
spectra, i.e. with small mass splittings, are particularly
difficult to identify through SUSY direct searches, be-
cause of the associated soft jets and leptons. In addition,
several dark matter direct detection experiments claimed
for signal of light dark matter particles [42–46], today
severely challenged by the LUX data. In view of these
data, in [47, 48] the possibility of finding in the pMSSM
a scenario with a light neutralino of about 10 GeV still
consistent with all the current data was investigated.

For such a light neutralino, constraints from the pre-
vious electron-positron colliders have to be considered.
A pure higgsino or wino state is always accompanied by
a chargino of similar mass. Such a light chargino would
have been discovered at LEP, even for small mass split-
tings between the chargino and the neutralino. There-
fore, a light neutralino has to be a pure bino. As a conse-
quence, this neutralino would have suppressed couplings
to the Higgs and Z bosons, lowering the decay fraction of
the Higgs and Z bosons to a pair of neutralinos so that
it is consistent with the available measurements of the
invisible decays.

Concerning the relic density constraint, the bino neu-
tralino alone would lead to a too large relic density, be-
cause the annihilation cross section of binos is small. As

FIG. 13: Average Z decay width to b̃1
¯̃
b1 as a function of the

sbottom mass. The horizontal line corresponds to the LEP
limit [47].

a consequence, it is necessary to have another light su-
persymmetric particle which could coannihilate with the
neutralino in order to lead to the correct dark matter
abundance. However, any charged or strongly interact-
ing light particles should have been discovered at lepton
colliders because of their small masses. This is clearly the
case for the charged sleptons, charginos, wino, higgsino or
wino-higgsino mixed state neutralinos, gluino or squarks
of the first or second generations. A light stop or sbottom
however could have escaped the constraints from LEP if
their couplings to the Z boson were suppressed, which
is achievable if the stop or sbottom mixing makes them
mostly right-handed. The mass of the light Higgs boson
requires heavy stops, but a light sbottom is still possible.
The discovered Higgs could still decay to right-handed
sbottoms, it is therefore necessary to find a compromise
in the sbottom mixing such that the coupling to the Z
boson is still suppressed while the coupling to the Higgs
boson is reduced. This possibility can be achieved if the
sbottom is of about 15 GeV. The decay width of the Z
boson to sbottoms is presented in Fig. 13.

In addition, the mass splitting of 5 GeV is at the right
value, leading to a relic density compatible with the cos-
mological observations and to a scattering cross section
with matter, mediated by the sbottom in a t-channel,
large enough to be consistent with the data by the direct
detection experiments seeing signals for a light DM par-
ticle. In addition no signal would be found in the cosmic
ray spectra of indirect detection. This result is presented
in Fig. 14.

A schematic representation of the typical spectrum for
this kind of model point is given in Fig. 15.

It was extensively checked that such a scenario is not
excluded by all the available experimental data. The list
of imposed constraints can be found in [47, 48]. It is also
remarkable that even if the production cross section of
two sbottoms at the LHC can be very large, because
the mass splitting between the sbottom and the neu-
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FIG. 14: In the upper panel, DM direct detection scatter-
ing cross section as a function of the neutralino relic density.
The vertical lines show the current experimental DM density
value. In the lower panel, scattering cross section as a function
of the DM indirect detection total annihilation cross section
for selected pMSSM points. The vertical dashed and solid
lines show the γ-ray strongest upper limit on the χ̃χ̃ → bb̄
and the p̄ strongest upper limit on χ̃χ̃ → bb̄g annihilation
cross sections, respectively [47].

tralino is close to the bottom mass, the produced b-jets
would be soft enough to escape detection. The monojet
searches are also not sensitive enough as the production
of two sbottoms and one jet would be strongly suppressed
by kinematics, because the masses of the sbottom, bot-
tom and neutralino are of the same order, falsifying the
narrow-width approximation. In addition, simultane-
ous cuts on the jet-pT and missing ET would reject the
events. The next run however would be able to probe this
specific region thanks to the increased production cross
section. Finally, the monophoton searches at PETRA
[49], TRISTAN [50] and LEP [51] were not able to probe
these scenarios because of the reduced production cross
sections, consequence of the suppressed coupling of the
sbottom to the Z boson as well as the kinematic suppres-
sion due to the small mass splitting between the sbottom
and the neutralino.

FIG. 15: Range of the masses of the relevant SUSY particles
in the pMSSM scenario with a light neutralino and nearly
degenerate sbottom [47].

3. EFFECTIVE FIELD THEORIES FOR
FLAVOUR, HIGGS, AND DARK MATTER

3.1. Introduction5

Effective Field Theories (EFTs) have many applica-
tions in contemporary particle physics and quantum field
theory. They are applicable whenever there are two
widely separated scales SH � SL in a physical prob-
lem, and serve to efficiently describe processes at scales
of order SL, with or without knowledge of physics at SH .
The EFT is then valid at scales SL � SH .

The approaches to EFTs can be classified into two
main categories. In the “top-down” approach the physics
at SH (i.e. the “full theory”) is known and the match-
ing from the full to the effective theory is perturbative.
This is for instance the case for the Fermi theory or the
weak effective hamiltonian Heff of flavour physics. In the
“bottom-up” approach the physics at the scale SH is ei-
ther unknown (as in the case of the SM which can also
be seen as an EFT of a more fundamental theory) or the
matching is non-perturbative (as e.g. in Chiral perturba-
tion theory).

The question arises why one should use an EFT in the
“top-down” approach where the full theory is known. In
this case it might be more appropriate to formulate the
physical problem in fewer or more suitable degrees of
freedom, which in turn leads to a reduced number of
scales. In addition, a systematic expansion in a small
parameter of O(SL/SH) might simplify the problem con-
sideraly. Moreover, new approximate symmetries might
appear which are hidden if the problem is approached in
the full theory. One example is HQET where at leading

5 Contributing authors: Yuval Grossman and Tobias Huber
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power a spin and flavour symmetries show up. Finally,
and most importantly, a systematic resummation of large
logarithms log(SH/SL) which are generated in the full
theory can be achieved conveniently in the EFT and al-
lows for precision predictions in multi-scale problems.

In the “top-down” approach one divides the fields into
high- and low-frequency modes, φ = φH + φL, and inte-
grates out the high-frequency modes φH via path-integral
techniques, yielding a non-local effective action S(φL).
Expanding the latter into products of local operators
Oi with matching coefficients (Wilson coefficients) Ci is
known as the “Operator Product Expansion” (OPE),

Leff =
∑
i

Ci(µ)Oi(φL, µ) , (15)

where the separation between long distances (encoded
in the matrix elements of the Oi) and short distances
(contained in the Wilson coefficients Ci) is controled by
the renormalisation scale µ. For details see [52].

The operators Oi are classified according to their
canonical dimension D = [Oi]. Operators with D < 4
and D = 4 are called relevant and marginal, respectively.
Contrary to what their names suggest, they don’t tell
us much about physics at some high scale. Operators
with D > 4, on the other hand, are named irrelevant, yet
these are the operators which are the really interesting
ones since they can teach us something about physics at
the scale SH . Neubert therefore comments on the above
nomenclature as “without a doubt one of the worst mis-
nomers in the history of Physics” [53].

In the following we are giving several examples of
EFTs and their applications, in particular, in relation to
flavour, Higgs, and dark matter topics. In some cases the
scale separation is very large and the use of EFTs are fully
justified. In other cases, however, it is not clear if the high
and low scales have large separation between them. Nev-
ertheless, in all the examples below, the physics become
much clearer due to the use of EFTs.

3.2. Effective field theories for Flavour and Higgs6

3.2.1. EFT in flavour physics

We give four examples of EFTs in flavour physics.
a) The effective weak Hamiltonian Heff [54], which is

the modern extension of the Fermi theory. One makes
use of the fact that in weak decays of mesons or baryons
the masses and momentum transfers are much smaller
than the masses of the weak gauge bosons and of the

top quark, mi,
√
q2 � MW,Z , mt, and uses the Fermi

constant GF as expansion parameter. This yields higher
dimension operators, that is with d > 4, which are local

6 Contributing author: Tobias Huber

interactions of four fermions or two fermions and a pho-
ton/gluon. Calculations consist of three steps: matching,
running, and on-shell matrix elements, and have reached
a highly sophisticated level. The former two steps are
process independent, whereas the last one is process de-
pendent.

b) Heavy-quark effective theory (HQET) [55, 56] is an
expansion in inverse powers of the heavy quark mass mQ

and is mainly applied for Q = b, c. The momentum pµQ
of the heavy quark gets separated according to pµQ =

mQ v
µ + kµ with v2 = 1 and k ∼ O(ΛQCD). The leading

order Lagrangian

LHQET = h̄v i v ·Dhv (16)

possesses a heavy-quark flavour symmetry and a heavy-
quark spin symmetry, which are both broken by sublead-
ing terms,

− h̄v
D2
⊥

2mQ
hv − g h̄v

σµνG
µν

4mQ
hv . (17)

c) Soft-collinear effective theory (SCET) [57–60] is ap-
plicable for jet-like objects of large energy and small in-
variant mass. Momenta are decomposed according to
pµ = (np) n̄

µ

2 + (n̄p) n
µ

2 + pµ⊥, with n̄2 = n2 = 0 and
n̄n = 2. Depending on the scaling of the individual com-
ponents one distinguishes hard, n-collinear, n̄-collinear,
and soft modes (in SCETI). The Lagrangian density
reads

LSCET = ξ̄
n̄/

2

[
in ·D + iD/c⊥

1

in̄ ·Dc
iD/c⊥

]
ξ

+ ψ̄siD/sψs −
1

4

(
F s,aµν

)2 − 1

4

(
F c,aµν

)2
, (18)

where s, c stand for soft and collinear, respectively. An
excellent review on SCET was recently released in [61].
SCET has been applied to many problems in flavour
physics, such as inclusive b → Xu`ν decays in the pres-
ence of a cut on mX [62] (see also [63–65]). The SCET
language is suitable for deriving factorisation theorems
which have the form

Γ ∼ H · J ⊗ S , (19)

i.e. the product of a hard function with the convolution of
a jet- and a universal soft function. SCET is also applied
to non-leptonic B-decays [66, 67]. More recently SCET
has been vastly applied to collider physics problems. Just
to mention a few, inclusive hadron-collider cross sec-
tions, Drell-Yan production, transverse momentum re-
summation, IR structure of gauge theory amplitudes,
event shapes (thrust, jet-broadening, C-parameter), jet
physics, electroweak Sudakov logarithms, Glauber glu-
ons, and gravity. A more complete list of application,
including the full list of references, can be found in [61].
The interplay between flavour and collider physics might
also help to get insight into yet unsolved problems in
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SCET. As is well-known, convolution integrals in QCD
factorisation (QCDF) diverge at subleading power [68]
(so-called endpoint divergencies). Recent analyses on the
collinear anomaly [69], together with analytic regularisa-
tion in SCET [70], might help to better understand and
eventually resolve the problem of endpoint divergences in
QCDF.

d) Chiral perturbation theory (ChPT) is written in
terms of mesons and baryons, the QCD degrees of free-
dom which are present below the scale of spontaneous
chiral symmetry breaking, i.e. at energies at or below
∼ 1 GeV [71–74]. The Lagrangian preserves the (ap-
proximate) chiral symmetry of QCD and is an expansion
in meson momenta and masses. To lowest order, it reads

LChPT =
F 2
φ

4
Tr[(DµU)(DµU)†] +

F 2
φ

4
Tr[χ†U + χU†]

(20)

The matrix U = exp(i
√

2Φ/Fφ) is a non-linear repre-
sentation of the axial generators and contains the pseu-
doscalar Goldstone bosons Φ =

√
2T aφa. Among the

numerous applications are ππ-scattering, η-decays, non-
leptonic, semi-leptonic and radiative K decays, pion-
nucleon scattering and so on. Reviews can be found
in [75–77].

3.2.2. EFT in Higgs physics

After the Higgs discovery [78, 79] one has to measure
its properties and continue the search for new physics
(NP) beyond the SM (BSM). This is done in a model-
independent way in EFTs, for example:

a) Higgs production in the gg channel proceeds mainly
via a top triangle loop, which can be integrated out to
yield an effective ggH vertex,

LggH = −C1(αs)

4v
H Gµνa Ga,µν . (21)

The matching coefficient C1 is known [80, 81], as well as
three-loop QCD corrections to the ggH vertex [82, 83].
The results were used recently in the prediction of
the Higgs-production cross-section via gluon-fusion to
NNNLO [84]. The limit mt → ∞ works very well for
inclusive observables, even for mH �/ 2mt. Corrections
for finite top-mass have also been calculated [85, 86].

b) Recently the complete dimension-six Lagrangian for
the SM was formulated in [87–95], (see also [96–98]).
They all build on earlier work from [99]. The operators
can be classified into bosonic, single-fermionic-current,
and four-fermion operators. Among them are CP-even
and CP-odd, baryon-number conserving and violating
ones. They allow to investigate processes in a model-
independent way, using only the SM gauge group and
unitarity. Although the total number of operators is
quite large (∼ 60), only a few of them contribute to a
given process, e.g. in Higgs physics or in the context of
anomalous gauge boson couplings. We shall give a few
examples below.
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FIG. 16: Bayesian fit to C7 and C′7 in the (SM+SM′) scenario.
The black diamond shows the projection of the SM point. The
crosses mark the best-fit point. Figure taken from [106].

3.2.3. Applications in flavour physics

We can present here only a small selection of applica-
tions:

a) The Wilson coefficients, being real in the SM, be-
come complex in general NP models. By introducing the
ratios

Ri = Ci(µ0)/CSM
i (µ0) , (22)

one can write the observables in terms of the Ri and de-
rive model-independent constraints on the Wilson coeffi-
cients at the matching scale µ0, as was done in [100, 101].
For a recent update, see [102] and section 5.

b) In exclusive B̄ → K∗`` decays, LHCb [103] mea-
sured in one bin of the observable P ′5 a 3.7σ discrep-
ancy between experiment and the SM prediction, a fea-
ture which got essentially confirmed using an increased
data set of 3fb−1 [104]. A possible impact of NP was
analysed both model-independently (see e.g. [105–107])
and in specific NP models (see below). Ref. [106] uses
data on many FCNC observables and combines them in
a Bayesian analysis. The fits include theory uncertain-
ties explicitly through nuisance parameters. The fit is
done for the SM alone, and for the SM supplemented by
chirality-flipped operators (SM+SM′), see Fig. 16. One
concludes that the SM provides adequate description of
the available |∆B| = |∆S| = 1 data, when permitting
subleading power corrections of ∼ 15% at large hadronic
recoil.

c) The B̄ → K∗`` anomaly has also been analysed in
specific NP models (see e.g. [30, 108, 109]). Ref. [109]
investigates a triple correlation between observables in
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FIG. 17: Parameter space in the |∆Bs | − |∆CKM| plane that
is favoured by the B̄ → K∗`` anomaly. The shaded region
indicates the parameter range disfavoured at 95% CL. The
coloured bands correspond to different values of MZ′ . Figure
taken from [109].

B̄ → K∗``, Bs − B̄s-mixing and the CKM unitarity, in
a minimal Z ′ model. Assuming that NP alters C9, one
can set constraints on

∆Bs =
∆MBs

∆MSM
Bs

− 1 ,

∆CKM =
∑
q=d,s,b |Vuq|2 − 1 , (23)

see Fig. 17.
d) A review on flavour constraints from b→ s, b→ d,

and c → u transitions can be found in [110]. Be-
sides model-independent constraints, minimal-flavour vi-
olation (MFV), supersymmetry, and extra dimensions
are investigated. For instance, in the MFV framework,
bounds are set on the NP scale Λ (assuming an effective
coupling of ±1/Λ2) for various ∆F = 1 and ∆F = 2
MFV operators. The lowest bound Λ = 1.5 TeV is
obtained for the operator (Q̄LY

uY u†γµQL)(eDνF
µν),

where observables from inclusive B̄ → Xs`` were used to
set the bound. A similar analysis was done in [111], where
flavour observables for BSM studies are implemented in
SARAH [112] and SPheno [113].

e) One can write down dimension-six operators which
are singlets under the SM gauge group and which are
baryon-number violating (BNV). This was first done
in [114] and later refined in [87, 115]. The latter ref-
erence also takes into account two operators with right-
handed (SM singlet) neutrino fields, and computes the
one-loop renormalisation group equations (RGEs) for the
dimension-six BNV operators. It turns out that the one-
loop RGEs conserve baryon-number, so the dimension-six
BNV operators only mix among themselves. The most

stringent bounds on BNV operators come from the non-
observation of proton decay.

3.2.4. Applications in Higgs physics

Also in Higgs physics the applications of EFT are nu-
merous and we have to stick to a few examples.

a) In ref. [116] constraints on the operators from elec-
troweak precision observables are investigated. For in-
stance, for the operators

OW = ic̄W g/(2m
2
W )[H†σi

↔
Dµ H][DνW

µν ]i ,

OB = ic̄Bg
′/(2m2

W )[H†
↔
Dµ H][∂νB

µν ] (24)

the 95% CL constraint

− 1.4× 10−3 < c̄W (mZ) + c̄B(mZ) < 1.9× 10−3 (25)

is provided (see also [117]). For the fermionic operator

OtG = c̄tG gs yt/m
2
W HcσµνλatRG

a
µν , (26)

the 95% CL constraints

− 6.12× 10−3 < Re(c̄tG) < 1.94× 10−3 ,

−1.39× 10−4 < Im(c̄tG) < 1.21× 10−4 (27)

could be derived from the tt̄ cross section and the limits
on the neutron EDM, respectively.

b) Ref. [118] studies effects on the oblique parameters
S, T , and U , including one-loop corrections in the effec-
tive theory. Bounds on different operators, for instance

OBW = −gg′/4 Φ†Bµνσ
aW a,µνΦ ,

OΦ,1 = (DµΦ)†(ΦΦ†)(DµΦ) (28)

could be derived, see Fig. 18. Limits on the coefficients
in the EFT from loop contributions to the oblique pa-
rameters yield complementary information compared to
direct Higgs production measurements.

c) In ref. [119] a global fit to the effective operators
was performed using all available experimental data. For
instance, constraints on

H†H

v2
c̄u yu q̄LH

cuR +
c̄gg g

2
s

m2
W

H†HGaµνG
a,µν (29)

were obtained, see Fig. 19. Similar results were shown
for CP-odd parameters. A similar global fit was done
in [95] where correlations between different observables
were investigated.

d) Constraints on anomalous gauge couplings and non-
standard Higgs couplings were investigated in the EFT
approach in [120] and [121], respectively.
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fBW for Λ = 1 TeV, for different confidence levels. Figure
taken from [118].
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3.3. Effectively Understanding Dark Matter7

7 Contributing author: William Shepherd
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FIG. 20: The leading bounds from collider searches on dark
matter operators from collider searches. The naming conven-
tion for the operators is due to [157], and the searches leading
to the bounds are cited in the text. Figure taken from [161]

We now move to show example of the use of EFTs
in applications related to dark matter (DM). Here we
use them to stand in for the effects of as-yet unknown
heavy particles. Many people have used this technique
to study the possible interactions of DM with particles of
the standard model. Unlike the more complicated cases
often studied, it is straightforward in these theories to
relate the different experimental probes of DM physics
to one another and understand the interplay and com-
plementarity of these disparate probes [122].

The best known application of these techniques is to
collider searches for dark matter[123–144], where one
generally searches for some particle radiated from the
initial state (generally a quark or gluon [145, 146], al-
though photons [147, 148] and weak bosons [149–151]
have also been searched for) and missing energy arising
from the produced DM pair. Since their original pro-
posal, these searches have been very quickly adopted by
the LHC collaborations, leading to bounds such as those
shown in Figure 20. One can also perform searches for
other operators, where radiation from the initial state is
not required as the operator itself gives rise to a visi-
ble particle in addition to the DM pair [152–156]. EFT
interactions of DM can also be used to understand the
requirements for dark matter arising from our improving
understanding of cosmology and from current searches
for dark matter annihilation products [143, 157–160].

Of course, the use of EFT techniques at the LHC are
somewhat dubious, as one might hope that not only the
DM itself but also the new particles which couple it to
SM particles are kinematically accessible to the LHC, in
which case it seems suspect to treat the interaction of
DM and SM particles using contact interactions. Natu-
rally, once the particle mediating the interaction is able
to be produced at the LHC the true bounds can be ei-
ther weaker or stronger than those derived from the con-
tact operator approximation, and this problem has been
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studied by many [162–168]. The CMS collaboration has
already imrpoved one of its searches [146] to include the
possible effects of an accessible mediator, studying the
bounds as a function of an assumed Z ′ mediator’s mass.
Interestingly, these techniques can also miss important
points even in more low-energy probes, particularly when
the DM interacts with different fields for the purposes of
annihilation and direct detection, for instance [169]. Ul-
timately, the EFT techniques provide a dictionary for
understanding the interplay between the various experi-
ments searching for DM, and provide a simple benchmark
to search for, as well as to search for deviations from once
a signal is available.

4. EXTENDED STANDARD MODEL

4.1. (g − 2)µ versus BR(µ→ eγ) in the MSSM8

The measured value of the muon anomalous mag-
netic moment aµ = (g − 2)µ/2 deviates from the Stan-
dard Model prediction by more than 3σ [170–175], which
could be due to the contributions from light sleptons,
charginos, or neutralinos in the MSSM. Besides, the
Feynman diagrams for the SUSY contributions to aµ and
to the branching ratio BR(µ → eγ) are identical up to
the flavour transition appearing only in the latter case.
For this reason, correlations between the two observables
have been studied [176–179].

As an example, Fig. 21 shows the contributions from
sneutrinos and the lighter chargino. As the couplings and
loop functions involved in both diagrams are the same,
we expect for their ratio

a
χ̃±1
µeγL

a
χ̃±1
µ

∝
m2
L̃12

m2
p̃

, (30)

where m2
L̃12

is the flavour-violating (FV) entry in the

soft mass squared matrix of the left-handed sleptons that
mixes selectrons and smuons, and mp̃ is the mass of a
superparticle or a combination of masses. The branching
ratio BR(µ→ eγ) ∝ |aµeγL|2 + |aµeγR|2 is obtained after
summing over all diagrams and adding the amplitude
aµeγR involving FV in the right-handed sector.

Both the proportionality constant and the mass scale
mp̃ appearing in Eq. (30) are different for different dia-
grams in general. Consequently, we can expect a strong
correlation between aµ and BR(µ → eγ) only if a single
diagram dominates the SUSY contributions [176, 177].
In the following we will study to which extent and in
which parts of the MSSM parameter space this is possi-
ble, summarizing results of [179].

8 Contributing authors: Jörn Kersten and Liliana Velasco-Sevilla

As a first try, we randomly varied the relevant mass
parameters M1, M2, µ, mL̃11

, mL̃22
, mR̃11

, and mR̃22

between 300 GeV and 600 GeV, fixing

δLL =
m2
L̃12

mL̃11
mL̃22

(31)

and the analogous parameter δRR to values compati-
ble with the experimental bound on BR(µ → eγ) from
MEG [180].9 The result is the light blue region in Fig. 22.
We observe that for fixed aµ the branching ratio varies
by a factor of about 10. Thus, in the considered scenario
with similar SUSY masses the correlation is sufficiently
strong to correctly determine the order of magnitude of
BR(µ→ eγ) if aµ and the FV parameters are known.10

This allows to determine a limit δLL . 2 · 10−5 below
which BR(µ → eγ) is guaranteed to satisfy the MEG
bound if our 7 SUSY masses vary by up to 30 % around
a mass scale M chosen such that we obtain the best-fit
value of aµ if all masses equal M . Larger values up to
δLL ' 8 · 10−5 are possible for some but not all combina-
tions of the masses and thus remain allowed. The bounds
on δRR are much weaker.

The order-of-magnitude correlation found so far is not
negligible but nevertheless relatively weak. This can be
traced back to two reasons. First, for similar SUSY
masses cancellations between different diagrams are al-
ways significant, reducing the value of aµ by at least 33 %
compared to the contribution from the leading diagram.
In other words, the leading diagram does not dominate
sufficiently. Second, δLL is not always the best choice
for parameterizing the FV. Consequently, we can expect
stronger correlations in parameter space regions featur-
ing hierarchies among the SUSY masses which lead to
the domination of a single diagram and determine the
optimal choice for mp̃ in Eq. (30). Let us consider three
examples.

We can obtain chargino dominance for M1 ∼ µ and
µ < M2 with a mass difference sufficiently large to make
the contribution of the heavier chargino small. In this
case the correlation depends on the mass ratios x1,2 =
(mχ̃±1

/mν̃1,2)2. For 5 out of the 9 possible hierarchies,

we can approximate the ratio aµeγL/aµ as in Eq. (30)
with an accuracy of better than 50 %, corresponding to
an approximation for the branching ratio that is accurate
up to a factor of about 2. For example, for x1 ∼ x2 ∼ 1
we find ∣∣∣∣aµeγL

aµ

∣∣∣∣ ' 1

4

m2
L̃12

m2
ν̃

' 1

4
δLL . (32)

9 For simplicity we assume all mass parameters to be real and
positive.

10 Note that the variation of BR(µ → eγ) becomes much smaller
if one imposes the constraints M2 ' 2M1 and mL̃11

= mL̃22
=

mR̃11
= mR̃22

[178].
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FIG. 21: Chargino–sneutrino contributions to aµ and BR(µ→ eγ). The cross denotes the flavour-violating parameter m2
L̃12

.

FIG. 22: Supersymmetric contribution to the anomalous mag-
netic moment of the muon versus BR(µ → eγ) for similar
SUSY masses (light blue), large µ (red), and heavy left-
handed sleptons (χ̃0–µ̃R dominance, violet). In each case,
δLL = δRR = 2 · 10−5 and tanβ = 50. The vertical hatched
band corresponds to the experimentally favored 2σ range for
aµ, while the horizontal band marks the region excluded by
MEG. Taken from [179], which also contains the details about
the random scans.

Thus, δLL is indeed the most suitable FV parameter here.
If x1, x2 � 1, we find instead∣∣∣∣aµeγL

aµ

∣∣∣∣ ' m2
L̃12

m2
χ̃±1

' δLL
mν̃1mν̃2

m2
χ̃±1

. (33)

Now δLL is not suited well to parameterize the FV.
Rather, the correlation is governed by the chargino mass,
the mass of the heaviest particle in the diagram. In or-
der to quantify this, let us compare two cases. First,
we fix mχ̃±1

(using the measured value of aµ) as well as

m2
L̃12

/m2
χ̃±1

, and vary all remaining parameters by up to

a factor of 2. Then aµeγL does not change by more than
50 %. Second, we fix mχ̃±1

as well as δLL, and vary the

remaining parameters. In this case, aµeγL changes by a
factor of 4 according to Eq. (33), emphasizing that δLL is
not the decisive parameter determining this amplitude.

In the large µ limit and for large tanβ, which was
also studied in [181], the dominant SUSY contribution
stems from the bino-like lightest neutralino and charged
sleptons. For example, we can obtain the measured value
of aµ for tanβ = 50, µ ' 4 TeV, M2 ' 1.8 TeV, M1 '

300 GeV, and slepton masses around 500 GeV. We find
that the approximation

∣∣∣∣aµeγL

aµ

∣∣∣∣ ' 2

3

m2
L̃12

m2
ẽL

(34)

is quite accurate, as is its analogue for the right-handed
sector. Again, δLL is not the parameter entering the ana-
logue of Eq. (30) (and neither is δRR), and the decisive
superparticle mass mẽL is not even necessarily the heav-
iest mass in the diagram. In addition, aµ is not very
sensitive to the selectron masses, so it does not restrict
the mass scale governing µ→ eγ. Hence, the value of the
correlation is somewhat limited in this case. It could still
be used to place a lower limit on the selectron masses if
m2
L̃12

and m2
R̃12

were determined by an additional source

of information, such as a family symmetry.

Neutralino–µ̃R dominance occurs for very heavy left-
handed sleptons and M1,m˜̀

R
< M2, |µ|. In this case we

need a negative µ parameter to obtain the correct positive
sign of aµ [182, 183]. We find a strong correlation that is
well-approximated by

∣∣∣∣aµeγR

aµ

∣∣∣∣ ' m2
R̃12

m2
ẽR

. (35)

Fig. 22 also shows points from random scans in the
large-µ and χ̃0–µ̃R dominance regions. As in the first
scan with similar SUSY masses, we fixed δLL and δRR,
leading to weaker correlations than could be obtained by
fixing the “correct” mass ratios given in Eqs. (34) and
(35).

To summarize this section, we have found that for sim-
ilar SUSY masses determining both aµ and BR(µ→ eγ),
cancellations are typical and the correlation between the
two observables is relatively weak. However, there are
interesting parameter space islands with characteristic
mass hierarchies and strong correlations. In such re-
gions the experimental limit on BR(µ → eγ) can imply
strong constraints on lepton FV parameters that cannot
be evaded by raising the overall SUSY mass scale, since
the measured value of aµ fixes the mass scale of the con-
tributing superparticles.
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4.2. Effects of vectorlike leptons on Higgs decays
and muon g-29

Among simplest extensions of the SM are those with
extra vectorlike fermions near the electroweak (EW)
scale. Vectorlike fermions can acquire masses indepen-
dently of their Yukawa couplings to the Higgs boson and
thus are not strongly constrained (compared to chiral
fermions) by experiments. They can modify the evolu-
tion of gauge couplings so that the couplings unify, thus
providing a framework that can be embedded into sim-
ple grand unified models (GUTs). Moreover, even small
Yukawa couplings between SM fermions and vectorlike
fermions can affect a variety of processes, including the
muon g-2 and Higgs boson decays.

Extending the SM by three (or more) complete vector-
like families (VFs) with masses of order 1 TeV - 100 TeV
allows for unification of gauge couplings [184, 185]. Pre-
dictions for gauge couplings at the EW scale are highly
insensitive to fundamental parameters, and ratios of ob-
served values are to a large extent understood from the
particle spectrum itself. The GUT scale can be suffi-
ciently large to avoid the problem with fast proton de-
cay, thus resurrecting simple non-supersymmetric GUT
models.

The way this scenario works can be summarized in few
steps. First, extra 3VFs make all gauge couplings asymp-
totically divergent which opens a possibility for a unifi-
cation with large (but still perturbative) unified gauge
coupling. Consequently, in the RG evolution to lower
energies gauge couplings run to the infrared fixed point.
Second, the ratios of gauge couplings far from the GUT
scale depend mostly on the particle content of the theory
and they happen to be not far from the observed values.
Finally, the discrepancies between values of gauge cou-
plings predicted from closeness to the infrared fixed point
and corresponding observed values can be fully explained
by threshold effects from masses of particles originating
from 3VFs. Note that the first part is similar to attempts
to explain observed values of gauge couplings from in-
frared fixed point with 8 to 10 chiral families [186, 187]
before the number of chiral families and values of gauge
couplings were tightly constrained.

The evolution of Higgs quartic and top Yukawa cou-
plings is also significantly modified. In the SM, the top
Yukawa coupling already drives Higgs quartic coupling
to negative values at a high scale. Additional sizable
Yukawa couplings accelerate this behavior and thus the
stability of the EW minimum sets a limit on the size of
extra Yukawa couplings. In the case of the SM extended
by 3VFs the Higgs quartic coupling can remain positive
all the way to the GUT scale even with additional Yukawa
couplings. The difference comes from larger values of all
gauge couplings compared to the SM above the scale of

9 Contributing author: Radovan Dermı́̌sek

vectorlike fermions. Larger gauge couplings slow down
the running of Higgs quartic coupling, and eventually
turn the beta function of Higgs quartic coupling posi-
tive. This effect is further amplified by the fact that the
top Yukawa is driven fast to much smaller values com-
pared to the SM (again due to larger gauge couplings)
and its contribution to the running of Higgs quartic cou-
pling becomes small.

Extra vectorlike fermions near the EW scale can also
contribute to many processes and observables involving
SM particles and they have often been considered to ex-
plain various anomalies. Examples include attempts to
explain the anomaly in the forward-backward asymmetry
of the b-quark [188–190] and the muon g-2 anomaly [191–
193]. In what follows I will focus on vector like leptons,
the muon g-2 anomaly and possible modifications of other
properties of the muon.

If the muon mixes with vectorlike leptons originating
from an SU(2) doublet L and a singlet E, the devia-
tion of the measured value of the muon anomalous mag-
netic moment from the standard model prediction can be
completely explained. This mixing simultaneously con-
tributes to the muon mass (we label this contribution by
mLE
µ ), and the correlation between contributions to the

muon mass and muon g-2 is controlled by the mass of the
neutrino originating from the doublet L, that is given by
the vectorlike mass parameter ML [193]. The possibil-
ity of explaining the muon g-2 anomaly by mixing of the
muon with extra heavy leptons was previously noticed
in Ref. [191] and the correlation between contributions
from mixing to the muon mass and muon g-2 was also
explored in Ref. [192].

FIG. 23: Feynman diagrams contributing to the muon mag-
netic moment that involve loops of new leptons and the Higgs,
Z and W bosons.

Feynman diagrams contributing to the muon magnetic
moment that involve loops of new leptons are shown
in Fig. 23. Depending on the mass of the heavy neu-
trino, there are two generic solutions: the asymptotic
one, ML �MZ , in which case the Higgs loop dominates
and the measured value of the muon g-2 is obtained for
mLE
µ /mµ ' −1; and the second one with a light extra

neutrino, ML ' MZ , in which case the W loop domi-
nates and the measured value of the muon g-2 is obtain
for mLE

µ /mµ ' +1. In the first case, about twice as
large contribution from the direct Yukawa coupling of
the muon is required to generate the correct muon mass,
while in the second case, the muon mass can fully origi-
nate from the mixing with heavy leptons [193].

As a result of the mixing, the Higgs coupling to the
muon is not given by the physical muon mass. Therefore
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the branching ratio of h→ µ+µ− is modified and can be
significantly enhanced. Depending on additional Yukawa
coupling, the branching ratio for h → γγ can be also
modified.

The sizes of possible contributions to the muon g-2,
muon mass and other observables depend on the upper
limit on Yukawa couplings (of vectorlike leptons or those
that mix vectorlike leptons with the muon) that we al-
low in the model. With the upper limit on Yukawa cou-
plings being 0.5, motivated by a simple UV embedding of
this scenario with three complete vectorlike families, the
muon g-2 can be explained within one standard deviation
either with ML . 130 GeV (the mass of the lightest extra
charged lepton is me4 . 150 GeV), or with ML & 1 TeV.
The small ML case predicts the h→ µ+µ− in the range 5
– 9 times the standard model prediction. The branching
ratio for h → γγ can be enhanced by ∼15% or lowered
by ∼25% from its SM prediction. The asymptotic case
predicts only very small modifications of h→ µ+µ− and
h→ γγ compared to the SM. Results for larger Yukawa
couplings being allowed can be found in Ref. [193].

The small ML solution to the muon g-2 simultane-
ously explaining the muon mass completely from the
mixing of the muon with vectorlike leptons is particu-
larly interesting since it requires very light charged lep-
ton. In a large range of the parameter space this solution
predicts the existence of e4 below the Higgs mass and
thus h → e±4 µ

∓ could be kinematically open and poten-
tially significant. Subsequent decays of the heavy lepton,
e±4 → Zµ± and e±4 →W±ν, lead to the same final states
as h → ZZ∗ → Zµ+µ− and h → WW ∗ → Wµν, thus
possibly affecting measurements of these processes [194].
Since the partial width of h → Zµ+µ− is much smaller
than h → Wµν in the SM, it is expected that the effect
of the new lepton would show up in h → Zµ+µ− first
unless BR(e±4 → Zµ±) is very small.

The e4 − µ− h, e4 − ν −W and e4 − µ− Z couplings
needed to explain the muon g-2 anomaly, see Fig. 23, are
sufficient to modify the Higgs decays in 4`, see Fig. 24,
and 2`2ν channels. Thus the contributions to the muon
g-2 and h → 4` can be connected without any further
assumptions. If only the muon mixes with vector like
leptons, the new charged lepton can contribute to the
h → 4µ and h → 2e2µ processes. Without additional
couplings it cannot contribute to h → 2µ2e (the first
pair of leptons originating from the on-shell Z) or h→ 4e
decay modes.

Although the 4` final states originating from h →
e±4 µ

∓ and h → ZZ∗ are identical, the kinematical dis-
tribution of final state leptons is not. The muon that
accompanies the e4 is somewhat soft, and if the mass of
the e4 is close to the Higgs mass, this muon does not pass
the cuts used in the h → ZZ∗ analysis. The acceptance
drops significantly within about 6 GeV below the Higgs
mass. For lighter e4 the h → e±4 µ

∓ can easily dominate
over h→ Zµ+µ− for values of couplings allowed by pre-
cision EW data and thus any enhancement in h → 4µ
and h→ 2e2µ allowed by current limits is possible.

FIG. 24: The Feynman diagram for h → e±4 µ
∓ → Zµ+µ−

contributing to the same final state as h→ ZZ∗ → Zµ+µ−.

There are also many scenarios which can explain the
muon g-2 anomaly within 1 sigma and simultaneously
significantly enhance h → 4µ and h → 2e2µ. Limiting
Yukawa couplings to 0.5, the mass of e4 has to be larger
than about 113 GeV in order not to be ruled out by
h → 4µ. Increasing the Yukawa couplings up to 1, the
me4can be close to the LEP limit for the small ML case.
For the asymptotic case, me4 is required to be larger than
about 119 GeV.

If the e4 is heavier than the Higgs boson then its contri-
bution to h → 4µ and h → 2e2µ is very small. However
the muon g-2 anomaly can still be fully explained. In this
case the only solid connection of the muon g-2 anomaly
and Higgs decays is through h→ µ+µ−.

4.3. Very Minimal Composite Higgs Models10

Models of Composite Higgs [195–201] provide one of
the most compelling solutions to the hierarchy problem.
In these models, the quadratic sensitivity of the Higgs bo-
son mass to the ultra-violet is saturated by new physics
at some scale Λ � ΛC ∼ 4πfπ, with fπ ∼ TeV, before
the new strong interaction featuring the Higgs as a bound
state starts to be resolved. Moreover, the small hierarchy
existing between the scale of compositeness and the elec-
troweak (EW) scale, Λ � MEW ∼ v, can be alleviated
within this framework if one assumes that the Higgs is
the pseudo Nambu-Goldstone boson (pNGB) associated
to the spontaneous breaking of some global symmetry G,
analogously to what happens with pions in QCD. Thus,
the Higgs boson can be effectively described at low en-
ergies by a non-linear σ-model parametrizing the break-
ing G → H, with H ⊂ G. The Higgs boson gets then
a mass at the quantum level from weakly gauging just
the EW subgroup of G ⊃ GEW, as well as from the in-
teraction of the composite sector with the elementary
fermions, transforming under the SM group. However,
the relatively small value of the Higgs mass observed by
the ATLAS and CMS experiments [78, 79], mH ≈ 125
GeV, together with the large top mass value, require the
masses of some of the composite states mixing with the

10 Contributing author: Adrián Carmona
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elementary top chiralities via linear mixings to be rather
small, mf ∼ fπ � Λ. Otherwise, the coefficients of
these linear mixings would become too big in order to ac-
commodate the top mass, leading then to an excessively
large breaking of the Goldstone symmetry and thus to a
Higgs heavier than observed. For most minimal scenarios
and natural values of fπ . 1 TeV, the presence of such
“anomalously” light top partners leads to considerable
tension with current LHC data [202].

Until very recently, the only viable way of lifting the
masses of these ultra-light top partners (without in-
creasing the scale of compositeness) required the embed-
ding of quarks in the symmetric representation of SO(5)
[203, 204]. However, these models suffer generically from
an “ad-hoc” tuning, as the predicted Higgs mass sits in
principle close to fπ, thus asking for a cancellation of
unrelated parameters to bring it down. Even though,
quantitatively, the tuning resulting in these setups is sim-
ilar to the one existing in the most economical scenarios
MCHM5,10, demanding such large representations with-
out any fundamental reason seems to go against the prin-
ciple of minimality. In particular, these models populate
the scale of fermionic resonances mψ ≡ gψfπ with a large
number of colored particles. However, as it was shown
recently [205], the inclusion of a realistic lepton sector
can in some cases change dramatically this picture, lift-
ing considerably the masses of the lightest top-partner
resonances without adding any new light degree of free-
dom to the spectrum. Moreover, it was also shown that
extremely minimal realizations of the lepton sector could
still avoid the need of light partners due to its sizable con-
tributions to the Higgs potential, triggered by a type-III
seesaw mechanism. In the following, we will review some
of these scenarios, trying to shed some light on the deep
relation existing in these models between the flavor pat-
tern in the lepton sector and the predicted value of the
Higgs mass. In order to fix some notation and illustrate
some key ingredients of these models, we will first review
briefly their generic five-dimensional (5D) descriptions.

4.3.1. General (5D) Setup

We consider a slice of AdS5 with metric

ds2 = a2(z)
(
ηµνdxµxν − dz2

)
, (36)

where z ∈ [R,R′] is the coordinate of the extra dimen-
sion, R and R′ are the positions of the ultra-violet (UV)
and infra-red (IR) branes, respectively, and a(z) ≡ R/z.
The bulk of the extra dimension is symmetric under the
gauge group SO(5)×U(1)X ,11 which is broken by bound-
ary conditions to the EW group SU(2)L ×U(1)Y on the

11 Larger cosets can also be considered, which may even lead to
the presence of Dark Matter candidates as explicitly studied in
[206–208].

UV brane and to SO(4) × U(1)X on the IR one. More
explicitly, this setup correspond to the following choice
of boundary conditions

Laµ(+,+), Rbµ(−,+), Bµ(+,+),

Z ′µ(−,+), C âµ(−,−), (37)

where a = 1, 2, 3, b = 1, 2, â = 1, 2, 3, 4 and −/+ de-
note Dirichlet/Neumann boundary conditions at the cor-
responding brane. The respective (4D) scalar compo-
nents, i.e., µ → 5, have opposite boundary conditions,
allowing for zero modes only in C â5 . In the above equa-
tion, L1,2,3

µ and R1,2,3
µ are the 4D vector components of

the 5D gauge bosons associated to SU(2)L and SU(2)R,
respectively, both subgroups of SO(5). We have also de-
fined the linear combinations

Bµ ≡ sφR
3
µ + cφXµ, Z ′µ ≡ cφR3

µ − sφXµ,

cφ ≡
g5√

g2
5 + g2

X

, sφ ≡
gX√
g2

5 + g2
X

, (38)

with g5 and gX being the dimensionfull 5D gauge cou-
plings of SO(5) and U(1)X , respectively, and Xµ the
gauge boson associated with U(1)X . Finally, C âµ are
the gauge bosons corresponding to the broken gener-
ators ∈ SO(5)/SO(4), whose scalar counterparts pro-
vide zero-modes C â5,(0)(x, z) ≡ f âh (z)hâ(x) spanning a

SU(2)L×U(1)Y doublet, with the proper quantum num-
bers to be identified with the Higgs boson doublet.

We fix 1/R ∼ 1016 TeV and, for each value of 1/R′ ∼
O(1) TeV addressing the hierarchy problem, we obtain
g5, sφ and 〈hâ〉 = vδâ4 in terms of {αQED, MW , MZ}.
This implies that, besides the value of R ∼ M−1

Pl fixed
by naturalness, the only free parameter in the 5D gauge
sector is R′,12 or equivalently,

fπ ≡
√

2

g5

[∫ R′

R

dz a−1(z)

]−1/2

≈ 2R1/2

g5R′
. (39)

With very good approximation, we obtain

g∗ ≈
e

sin θW

√
log(R′/R), sφ ≈ tan θW , (40)

and

MW ≈
e

2
sin θW fπ sin(v/fπ), (41)

where g∗ ≡ g5R
−1/2 is the dimensionless 5D gauge cou-

pling, e =
√

4παQED is the electric charge and θW is the
Weinberg angle.

The fermion sector will depend on the specific
SO(5) representations in which the 5D fields transform,
1,4,5,10 or 14. Taking into account that Y = T 3

R+QX

12 We assume for simplicity no brane localized kinetic terms.
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it would be straightforward to work out all possible em-
beddings of the SM fermions. Since fermions with a siz-
able degree of compositeness are the only ones playing a
non-negligible role in the generation of the Higgs poten-
tial and the Higgs mass, henceforth we will neglect UV
localized fermions. However, to reproduce the different
charged lepton masses we will still include left-handed
(LH) leptons if their right-handed (RH) counterparts are
composite, as it will be the case (see below). Neglecting
thus the first two quark generations as well as the RH
bottom, the smallest embedding of the quark sector fea-
tures a fundamental representation of SO(5) and a full
singlet,

ζ1 =

(
Λ̃1[−,+] t1[+,+]
t̃1[−,+] b1[+,+]

)
⊕ t′1[−,+] ∼ 52/3,

ζ2 = t′2[−,−] ∼ 12/3, (42)

where QX = 2/3 and we have explicitly shown the de-
composition under SO(4) ∼= SU(2)L × SU(2)R, with the
bidoublet being represented by a 2 × 2 matrix on which
the SU(2)L rotation acts vertically and the SU(2)R one
horizontally. In particular, the left and right columns
correspond to fields with T 3

R = ±1/2, whereas the upper
and lower rows have T 3

L = ±1/2. The signs in square
brackets denote the boundary conditions on the corre-
sponding branes. A Dirichlet boundary condition for the
LH chirality is denoted by [−] while the opposite sign
denotes the same boundary condition for the RH one.
Hence, before electroweak symmetry breaking (EWSB),
zero-modes with quantum numbers 21/6 and 12/3 un-
der SU(2)L × U(1)Y are present in ζ1 and ζ2, respec-
tively. For the sake of concreteness, we will call this setup
MCHM5−1, where the first and second subscripts refer to
the specific embedding of the LH and RH SM-fermions,
respectively.13

However, in the usual paradigm where the top is almost
fully responsible of triggering the EWSB, such a compact
realization of the quark sector does not provide a viable
Higgs potential (see e.g. [205]). This is typically solved
by promoting the full singlet hosting the RH top to a
fundamental of SO(5), i.e., by going to the MCHM5,

ζ1 =

(
Λ̃1[−,+] t1[+,+]
t̃1[−,+] b1[+,+]

)
⊕ t′1[−,+] ∼ 52/3,

ζ2 =

(
Λ̃2[+,−] t2[+,−]
t̃2[+,−] b2[+,−]

)
⊕ t′2[−,−] ∼ 52/3. (43)

Nevertheless, as it was shown in [205] and we will see
below, the consideration of minimal leptonic sectors fea-
turing a type-III seesaw results in additional sizable con-
tributions to the Higgs potential that can render viable
the MCHM5−1. Henceforth we will just consider these
two scenarios in the quark sector.

13 If they are both equal we will use just one index as customary.

In both cases, the relevant part of the action reads

S ⊃
∑
k=1,2

∫
d4x

∫ R′

R

dz a4

{
ζ̄k

[
i��D +

(
D5 + 2

a′

a

)
γ5

− aMk

]
ζk

}
+ SUV + SIR, (44)

with14

DM = ∂M − ig5T
a
LL

a
M − ig5T

b
RR

b
M − igY Y BM

−i gY
cφsφ

Z ′M
(
T 3
R − s2

φY
)
− ig5T

âC âM , (45)

where M = µ, 5 and gY ≡ g5gX/
√
g2

5 + g2
X . SUV and

SIR include possible brane localized terms. As usual, we
have parametrized the bulk masses Mk = ck/R in terms
of dimensionless bulk mass parameters ck and the fun-
damental scale R. The fifth component of the covariant
derivative in the above action generates the Yukawa in-
teractions

S ⊃ −
∑
k=1,2

ig5

∫
d4x

∫ R′

R

dz a4ζ̄kγ
5T 4ζkC

4
5 = (46)

− i√
2
g2

5fπ
∑
k=1,2

∫
d4x

∫ R′

R

dz a3ζ̄kγ
5T 4ζkh+ . . . ,

where the dots stand for terms involving the non-physical
Kaluza-Klein (KK) excitations of the Higgs boson and we
have used that the Higgs profile is given by

f4
h(z) = a−1

[∫ R′

R

dz′ a−1

]−1/2

=
1√
2
g5fπa

−1. (47)

Looking at the specific form of the Yukawa interac-
tions, one can readily see that a non-zero mass for the
zero-modes after EWSB requires the addition of some IR
brane terms splitting the zero-modes between the differ-
ent multiplets. Therefore we consider the following IR
localized action

SIR = −
∫

d4x
{
a4
[
Mq
Sζ

(1,1)

1L ζ
(1,1)
2R

+ Mq
Bζ

(2,2)

1L ζ
(2,2)
2R

]}
z=R′

+ h.c., (48)

where we have used the SO(4) decomposition ζ = ζ(2,2)+

ζ(1,1), and ζ
(2,2)
2 ≡ 0 ≡Mq

B for the MCHM5−1.
When considering minimal scenarios in the lepton sec-

tor, it is instructive to take a close look to the symmet-
ric representation of SO(5), whose decomposition under
SO(4) reads 14 = (1,1)⊕ (2,2)⊕ (3,3). One can easily
see that it is the only one which can host at the same time

14 See [205] for explicit expressions of the SO(5) generators.
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a PLR protected SU(2)L × U(1)Y singlet and a triplet
∼ 30. This implies in particular that, using the 14, we
can build very economical models in the lepton sector,
where the neutrino masses are generated via a type-III
seesaw. In the following, we will consider the most mini-
mal of these scenarios, the so called mMCHMIII, realized
with LH and RH leptons transforming as 5−1 and 14−1,
respectively, under SO(5) × U(1)X . The corresponding
boundary conditions read

ξ1τ = τ ′1[−,+]⊕
(
ντ1 [+,+] τ̃1[−,+]

τ1[+,+] Ỹ τ1 [−,+]

)
∼ 5−1,

ξ2τ = τ ′2[−,−]⊕
(
ντ2 [+,−] τ̃2[+,−]

τ2[+,−] Ỹ τ2 [+,−]

)
(49)

⊕

 λ̂τ2 [−,−] ντ ′′2 [+,−] τ ′′′2 [+,−]
ν̂τ2 [−,−] τ ′′2 [+,−] Y τ ′′′2 [+,−]
τ̂2[−,−] Y τ ′′2 [+,−] Θτ ′′′

2 [+,−]

 ∼ 14−1,

where for simplicity we have just shown the multiplets for
the third generation, being the ones for the first two gen-
erations completely analogous. These boundary condi-
tions imply the presence of the following SU(2)L×U(1)Y
zero-modes, l

(0)
`L ∼ 2−1/2 ⊂ ξ1` and `

(0)
R ∼ 1−1,Σ

(0)
`R ∼

30 ⊂ ξ2`, with ` = e, µ, τ .
In this case, we can write down the following UV Ma-

jorana mass,

SUV = −1

2

∑
`

∫
d4x

∫ R′

R

dz
{
a4M `

ΣTr
(
Σ̄`RΣc`R

)}
z=R

+h.c., (50)

where

Σ` =

(
ν̂`2/
√

2 λ̂`2
`2 −ν̂`2/

√
2

)
, ` = e, µ, τ, (51)

are the 5D SU(2)L×U(1)Y triplets hosting the Σ
(0)
`R zero-

modes. On the other hand, the IR brane masses read

SIR =
∑
`

∫
d4x

{
a4

[√
5

2
M `
S

(
ξ

(1,1)

1`L ξ
(1,1)
2`R

)
5

+
√

2M `
B

(
ξ

(2,2)

1`L ξ
(2,2)
2jR

)
5

]}
z=R′

+ h.c., (52)

where for convenience we have added prefactors −
√

5/2

and −
√

2, see [205], and, for the sake of simplicity, we
have assumed all brane masses M `

Σ,M
`
S and M `

B to be
diagonal.

The Majorana mass matrix for the corresponding zero-
modes reads

M``′

M ≈
f2
−c`2
R′

(
R′

R

)−2c`
′

2

M `
Σδ``′ , `, `′ ∈ {e, µ, τ}, (53)

where

fc ≡
[

1− 2c

1−
(
R
R′

)1−2c

] 1
2

(54)

is the zero-mode wave function at the IR brane. This
mass matrix is typically too large, ‖MM‖ ∼ O(MPl),
unless the corresponding zero-mode profiles are pushed
away from the UV brane. This leads to values of c`2 ∈
(−1/2, 0) and thus IR localized RH zero-modes. There-
fore, just the quantum numbers of the lepton sector and
the overall scale of the neutrino masses lead naturally to
IR localized leptons for all three generations. This will
allow us to compensate the relative color suppression of
the lepton sector in the contribution to the Higgs poten-
tial, making this setup particularly interesting for lifting
the masses of the top partners.

4.3.2. Two Concrete Examples

In the following we will study in more detail two par-
ticular examples of highly economical composite Higgs
models, both featuring the smallest implementation of a
type-III seesaw in the lepton sector. In particular, we will
consider the mMCHMIII

5 and the mMCHMIII>
5−1 , where as

before subscripts refer to the specific quark representa-
tions and the superscript “>” implies that there will be
no additional hierarchy between the brane masses in the
lepton and the quark sector (see below). In both cases, we
perform a numerical scan over the different brane masses
for fixed values of R = 10−16 TeV−1 and fπ = 0.8 TeV,
which correspond roughly to g∗ ≈ 4.0 and sφ ≈ tan θW .
We assume brane masses fulfilling

|Mq
S |, |Mq

B |, |Mq
T | ≤ Y q∗ , Mq,l

S ,Mq,l
B ,Mq,l

T ∈ C, (55)

and

|M `
Σ|, |M `

S |, |M `
B | ≤ Y l∗ ,

M `
Σ,M

`
S ,M

`
B ∈ R, with ` = e, µ, τ, (56)

where we have taken real brane masses in the lepton sec-
tor for the sake of simplicity, since due to the presence
of the Majorana masses M `

Σ the size of the system of
equations that we have to solve (which is already 10×10
in this case) would double. The numbers Y q∗ , Y

l
∗ ∈ R+

are fixed to some benchmark values specified below. The
quark bulk masses cq1 and cq2 are fixed requiring

∂V (h)

∂h

∣∣∣∣
h=v

= 0, mt = mref
t , (57)

with

mref
t ∈ [145, 155] GeV (58)

being the top mass evaluated at the high scale fπ ∼
O(1) TeV. On the other hand, for each lepton genera-
tion `, the bulk masses are fixed by imposing the corre-
sponding charged lepton masses and the following neu-
trino spectrum

m`
ν = m`;ref

ν , (59)
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with15

m`;ref
ν = ε`10−p` eV and ε` ∈ [0, 1], p` ∈ [0, 3]. (60)

The chosen value fπ = 0.8 TeV ensures a reasonable
agreement with electroweak precision data, since

T = 0, S ≈ 3

2
πv2R′2 = 6π

(
v

fπ

)2

g−2
∗ , U = 0, (61)

in these models at tree level [201, 209], which leads in
our case to S ≈ 0.112 and T = 0 = U . In general,
even though S|U=0 = 0.05±0.09 at 95% confidence level
[117], the large correlation with the predicted value of the
T parameter, ρcorr. = 0.91, would in principle point to
a larger value of fπ. However, as we are also neglecting
non-oblique effects as well as radiative fermion correc-
tions which can give an non-negligible positive contribu-
tion to the T parameter [210], we will be satisfied by the
numbers shown above as a first approximation. Besides
this, we have also checked that |δgZ ¯̀̀ /gZ ¯̀̀ | ≤ 2h, with
` = e, µ, τ, for all points on the scan.

In Figure 25 we show the mass of the lightest top part-
ner, mmin

2/3 , as a function of the Higgs mass evaluated at

the composite scale fπ for the mMCHMIII
5 . The yellow

band corresponds to the experimental value of the Higgs
mass, mH(fπ) = 105 GeV (1 ± 7.5%), with the allowed
range accounting for the uncertainties in the running in
a conservative way [205]. We also show the Barbieri-
Giudice measurement of the tuning, ∆BG, by the color
of every point in the mH −mmin

2/3 plane, where light yel-

low corresponds to a negligible tuning ∆BG ∼ 0, whereas
dark red depicts a sizable tuning ∆BG & 100. This mea-
sure includes both the tuning to get a correct EWSB (the
tuning entering the Higgs vev) as well as the potential
ad-hoc tuning in the Higgs mass. Here, we assume some
hierarchy between the brane masses in the quark and the
lepton sector, or “Yukawa suppression”, Y l∗ = 0.35 versus
Y q∗ = 0.7, which may be motivated by the specific flavor
pattern observed in the lepton sector [205, 211]. We can
see from the plot that we can have masses for the lightest
top partner well beyond the TeV, with a reasonably small
tuning. In particular, a considerable amount of points
with a viable Higgs mass feature mmin

2/3 ∼ (1−2.5) TeV to-

gether with a tuning ∆BG . (10−20). This is easy to un-
derstand since a negative lepton contribution to the Higgs
mass can allow for a larger top breaking of the Gold-
stone symmetry and thus heavier partner masses. The
fact that the RH charged leptons are embedded in 14s
of SO(4), with parametrically larger contributions to the
Higgs mass, and that all three generations feature a sim-
ilar degree of compositeness make in principle the lepton

15 For our purposes it is enough to impose a reasonable neutrino
mass scale. One could easily generalize this for a complete flavor
model, reproducing the neutrino mass squared differences as well
as the observed PMNS mixing matrix.

contribution important. However, the assumed Yukawa
suppression, in agreement with the fact that m` � v in
contrast to the top quark, avoids the otherwise expected
increase of the tuning in the Higgs mass. Moreover, the
masses of the lepton partners are in general at the KK
scale MKK ∼ 3 TeV, as the IR localization of the RH
leptons is rather modest (and m` � mt). In order to be
able to quantify more precisely the impact of leptons we
display in Figure 26 the survival function Pm(x) of the
first top partner mass, defined as the fraction of points
reproducing the correct Higgs mass for which mmin

2/3 ≥ x,

for the mMCHMIII
5 (solid green) against the one of the

MCHM5 (dashed red). The curve has been obtained by
smoothening the corresponding histograms and the black
line depicts the 95% quantile. One can see that while 95%
of the points of the MCHM5 feature light partners below
800 GeV, in the mMCHMIII

5 the 95% quantile is reached
only for mmin

2/3 = 2.2 TeV, with even & 10% of the points

having partner masses mmin
2/3 & 2 TeV.
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FIG. 25: Mass of the first top partner as a function of the
Higgs mass in the mMCHMIII

5 for Y q∗ = 0.7 and Y l∗ = 0.35.
Lighter points correspond to smaller values of ∆BG and there-
fore to less tuned points.

The distribution of the top partner masses in the most
minimal scenario mMCHMIII>

5−1 is examined in Figure 27,
where we show again the mass of the lightest top partner
resonance mmin

2/3 as a function of the Higgs mass mH(fπ).

As denoted by the superscript “>”, in this case we have
lifted the previously assumed Yukawa suppression and
taken equal maximum brane masses Y q∗ = 0.7 = Y l∗ ,
since the lepton contribution to the sin2(h/fπ) term of
the potential is expected to cancel to a significant ex-
tend the sizable contribution of the top quark to allow
for EWSB. In principle, this would also imply a consid-
erable enhancement of the ad-hoc tuning in the Higgs
mass, since the lepton contribution to the Higgs mass
would increase accordingly. However, at the end such
increase turns out to be rather moderate and the cor-
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FIG. 26: Survival function Pm of the first top partner mass
in the mMCHMIII

5 with Y q∗ = 0.7 and Y l∗ = 0.35 (solid green)
vs. the MCHM5 (dashed red) with Y q∗ = 0.7.
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FIG. 27: Mass of the first top partner as a function of the
Higgs mass in the mMCHMIII>

5−1 with Y l∗ = Y l∗ = 0.7. Lighter
points correspond to smaller values of ∆BG and therefore to
less tuned points.

rect Higgs mass can be reached with a modest tuning of
∆BG ∼ (30− 40). This is in particular a consequence of
having a relatively fully composite tR, not contributing to
V (h), which in turn allows for a less IR localized tL and
thus a reduced top contribution to the Higgs potential.
On the other hand, as it is clearly visible from the plot,
the model does not even show ultra light partners below
a TeV anywhere in its parameter space, being possible
to lift these masses well above 3 TeV. The correspond-
ing survival function, depicted by the solid green lines in
Figure 28, do not drop under 5% even until mmin

2/3 & 3

TeV.
Finally, we confront in Figure 29 the fine tuning of
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FIG. 28: Survival function Pm of the first top partner mass
in the mMCHMIII>

5−1 with Y l∗ = Y q∗ = 0.7 (solid green) vs. the
MCHM5 (dashed red) with Y q∗ = 0.7.

the mMCHMIII
5 and the mMCHMIII>

5−1 with that of the
MCHM14−1, which is arguably the most competitive
model in the quark sector avoiding the presence of light
partners [203–205]. We display the survival function
P∆(x), describing the fraction of points with a given fine
tuning larger or equal than x, for all points in the viable
Higgs-mass band and assuming mmin

2/3 > 1 TeV. This plot

confirms clearly that the mMCHMIII
5 opens for the first

time the parameter space to allow for a minimal tuning
of even less than 10% while at the same time not predict-
ing anomalously light partners. While already this model
provides a motivation for the appearance of a symmet-
ric representation of SO(5) and does not introduce many
new particles, a major virtue of the mMCHMIII>

5−1 on the
other hand is its highest degree of minimality and natu-
ralness. This is true in the lepton sector, where it pro-
vides the most economical realization of the type-III see-
saw, as well as in the quark one, where it embeds each SM
fermion in the smallest SO(5) multiplet one can imagine
(respecting custodial protection of the Z couplings), lead-
ing to the least number of degrees of freedom in the full
fermion sector for viable models [205]. Obviously, raising
top partners through this model is much more minimal
than in the MCHM14−1, which adds many colored de-
grees of freedom at the TeV scale with a similar amount
of tuning.

To summarize, we have examined two particular ex-
amples of models that allow to lift the masses of the
lightest top-partner resonances well above the region cur-
rently probed by the LHC in an orthogonal way to for-
mer studies, i.e. without significantly increasing the col-
ored fermion sector while still predicting a naturally light
Higgs. In particular, we pointed out the large minimality
of the mMCHMIII models, which, even though presenting
a symmetric representation of SO(5), allow for a smaller
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FIG. 29: Survival function P∆ for the fine tuning ∆BG

imposing mmin
2/3 > 1 TeV in the MCHM14−1 (dotted blue),

mMCHMIII>
5−1 with Y l∗ = 0.7 (dashed red), and mMCHMIII

5

with Y l∗ = 0.35 (solid green), always employing Y q∗ = 0.7.

number of new particles than for instance the standard
MCHM5, by unifying both LH and RH SM-leptons in a
single multiplet, respectively. We also showed how, con-
trary to the quark sector, the lepton sector provides a
compelling motivation for the emergence of a symmetric
representation through the seesaw mechanism and how
the mMCHMIII

5 allows to accommodate the absence of
anomalously light partners with a minimal tuning. It
is indeed the particular type-III seesaw that allows the
unification of the RH lepton fields, not possible in the
quark sector due to the SU(2) breaking masses and/or
the quantum numbers. Furthermore, we have seen that
the a priori sizable lepton contribution in these models
to the Higgs mass and the Higgs potential allow to render
viable models where each top chirality is embedded in the
smallest possible SO(5) representation (with custodially
protected Z couplings), enhancing thus the minimality of
the setup also in the quark sector. In particular, we have
shown that the mMCHMIII>

5−1 leads to an important rise
in the masses of the lightest top partners with a modest
amount of tuning, while featuring the least number of
fermionic degrees of freedom of all viable models.

5. STATUS OF FLAVOUR PHYSICS11

The status of flavour physics at the end of the B-
factories/Tevatron era and after the first few years of
data from LHCb is characterized by an overall confirma-
tion of the CKM paradigm [212, 213] and by a number

11 Contributing authors: Enrico Lunghi and Tobias Hurth

of two-three sigma tensions. None of the latter is clean
and/or significant enough to signify a clear breakdown of
the Standard Model description of flavour. A selection
of interesting deviations includes:

• A 1.5 sigma tension in unitarity triangle fits con-
trolled by the rare decay B → τν and by the time
dependent CP asymmetry in B → J/ψKs (that
allows a clean extraction of the the angle β) [214–
216].

• Three sigma tensions in the the determinations of
the CKM elements Vub and Vcb from inclusive and
exclusive semileptonic B decays [217–219].

• Tensions observed in the rare decays B →
K∗`` (` = e, µ) at low and high dilepton invariant
mass [103, 104].

• A puzzling deviation from lepton universality
amongst the first two generations in the B →
K`` (` = e, µ) branching ratios [220].

• An anomalously large same sign di-muon charge
asymmetry measured by D0 [221].

In this short overview we review unitarity triangle fits
and B → K(∗)`` rare decays. With regards to the latter
we also discuss the impact of future inclusive B → Xs``
measurements at Belle II.

5.1. Unitarity Triangle Fits

The standard global analysis of CP violation within
the CKM framework is based on the unitarity relation

V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0 (62)

that, when represented in the complex plan identify the
so called unitarity triangle. Each of the CKM entries is a
function of the four Wolfenstein parameters λ, A, ρ and
η and the standard presentation consists in marginaliz-
ing over λ and A and present results in the (ρ, η) plane
(for a pedagogical review of these topics see, for in-
stance, ref. [52]). The constraints that we include in
the fit are the Bd and Bs mass differences, εK , the di-
rect determinations of |Vcb| and |Vub| from inclusive and
exclusive b → (c, u)`ν decays, the time dependent CP
asymmetry in B → J/ψKs (sin 2β), the determination
of α from B → (ππ, ρρ, ρπ) decays, the extraction of
γ from B → D(∗)K(∗) decays and the branching ratio
for B → τν. All of these quantities present exceptional
challenges in their experimental determination, theoret-
ical calculation or both. The most relevant inputs that
we use in the fit are summarized in table 3.

From the experimental point of view, the main diffi-
culties lie in the measurement of B → D(∗)K(∗) branch-
ing ratios and CP asymmetries (the extraction of γ than
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|Vcb|excl = (39.36± 0.75)× 10−3 B̂K = 0.766± 0.010

|Vub|excl = (3.42± 0.21)× 10−3 κε = 0.944± 0.015

|Vcb|incl = (42.42± 0.86)× 10−3 ξ = 1.268± 0.063

|Vub|incl = (4.40± 0.25)× 10−3 α = (87.7± 3.4)o

|Vcb|avg = (40.7± 1.5)× 10−3 γ = (68.3± 7.5)o

|Vub|avg = (3.82± 0.48)× 10−3

fBd = (186.4± 4.0) MeV

fBs

√
B̂Bs = (266± 18) MeV

BR(B → τν) = (1.08± 0.21)× 10−4

TABLE 3: Lattice-QCD and other inputs to the unitarity
triangle analysis. The sources used a FLAG [217], PDG [222]
and CKMfitter [215] (for the determination of γ).

FIG. 30: Unitarity triangle fits.

follows from relatively clean isospin fits) and in the mea-
surement of the B → τν branching ratio. While the for-
mer are expected to be measured with great precision in
the next few years at LHCb, the latter require the clean
environment of a B-factory to be reconstructed. The ex-
perimental precision that is expected from Belle II with
50 ab−1 is about 3% (compared to the 19% of the current
world average).

From the theoretical point of view, the strongest chal-
lenge remaining is the resolution of the conflicts between
the determination of |Vcb| and |Vub| from inclusive and
exclusive b → (c, u)`ν decays. In both cases, inclusive
and exclusive modes yields CKM elements that differ

at the about three sigma level (see table 3). Inclusive
modes are in principle controlled by perturbative physics.
While the status of B → Xc`ν calculations is excellent
(see for instance ref. [223]), the B → Xu`ν transition
is afflicted by a general breakdown of the OPE due to
experimental cuts required to suppress the B → Xc`ν
background that result in large uncertainties related to
the B meson shape function [63, 224] (more recently
BaBar and Belle presented results that take into ac-
count approximatively 90% of the total available phase
space [225]). Predictions for exclusive modes are con-
trolled by the lattice QCD determination of the B → π
and B → D(∗) form factors (the former, in particular,
requires an extrapolation at low-q2 that is usually per-
formed using a z-parametrization and a simultaneous fit
of lattice and experimental results). Very recently LHCb
presented a determination of Vub from the baryonic pro-
cess Λ0

b → pµν̄µ [219] using a very recent lattice QCD
calculation of the Λb → p form factor [226]; this new re-
sult is in excellent agreement with the determination of
Vub from B → π`ν decays. The averages we adopt are
presented in table 3 where the uncertainties have been
rescaled (using the PDG prescription) in order to take
into account the three sigma tension amongst the inputs.
Finally we should point out that recent impressive im-
provements of lattice QCD determinations of various ma-
trix elements (e.g. the K− K̄ matrix element B̂K has an
uncertainty of about 1%) has made the remaining lattice
inputs almost subdominant in the fit.

The results that we obtain are presented in Figs. 30-32
(the explicit formulae used can be found, for instance, in
refs. [227, 228]).

In Fig. 30 we assume that high-scale new physics con-
tributions are confined to the Bd mixing sector thereby
affecting the determinations of sin 2β and α (in principle
also the ratio ∆MBs/∆MBd is affected by we find that
the fit constraints this ratio to be very close to the SM
prediction). We therefore remove these two constraints
from the fit and extract a prediction for sin 2β (given in
the plot) and find that deviates at 1.5 sigma level from its
direct determination. The parametrization we adopt is

Md,NP
12 /Md,SM

12 = r2
d e

2iθd where M12 is the Bd-B̄d matrix
element (see for instance ref. [52]) and in the Standard
Model rd = 1 and θd = 0. In presence of non-vanishing
contributions to Bd mixing the following observables are
affected:

SψKS = sin 2(β + θd) , (63)

sin(2αeff) = sin 2(α− θd) , (64)

∆MBs

∆MBd

= r−2
d

(
∆MBs

∆MBd

)
SM

. (65)

In the lower left plot of Fig. 30 we show the results of
this fit in the [rd, θd] plane where we see that there is a
slight tension that favors negative values of θd (the actual
fit result is θd = −(3.6 ± 2.3)o). These results can be
interpreted in terms of a new physics scale in an effective
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FIG. 31: Constraints on a generic parametrization of new
physics contributions to Bd mixing.

Hamiltonian framework:

Heff =
G2
Fm

4
W

16π2
(VtbV

∗
td)

2
CSM

1

(
1

m2
W

− eiϕ

Λ2

)
O1 , (66)

In this parametrization Λ is the scale of some new physics
model whose interactions are identical to the Standard
Model with the exception of an additional arbitrary CP
violating phase:

C1 = CSM
1

(
1− eiϕm

2
W

Λ2

)
. (67)

The corresponding results in the [Λ, ϕ] plane are pre-
sented in the lower right plot of Fig. 30 where we see
that scales in the [200, 400] GeV range are preferred.

In Fig. 31 we entertain a complementary scenario in
which new physics is allowed to affect only the B → τν
branching ratio. Models in which this happens are fairly
common because a simple charged Higgs tree level ex-
change can contribute sizably to the B → τν amplitude.
Following the same strategy as above, we remove the
B → τν constraint from the fit and compare the fit result
to the direct measurement finding a 1.4 sigma tension.

Finally, in Fig. 32 we consider the more exotic possibil-
ity of taking the discrepancy between the inclusive and
exclusive determinations of |Vub| at face value and intro-
ducing interactions whose impact on exclusive B → Xu`ν
decays is much larger than in inclusive ones. The intro-
duction of a right–handed effective ūRW/bR coupling of-
fers the most elegant solution of the “Vub puzzle” (see for
instance refs. [229–233]). In this scenario we have:

Vub ūLW/bL =⇒ Vub
(
ūLW/bL + ξRub ūRW/bR

)
. (68)

The effective parameter ξRub affects all b → u`ν (` =
e, µ, τ) transitions:

|Vub|incl =⇒
√

1 +
∣∣ξRub∣∣2 |Vub| , (69)

|Vub|excl =⇒
∣∣1 + ξRub

∣∣ |Vub| , (70)

BR(B → τν) =⇒
∣∣1− ξRub∣∣2 BR(B → τν) . (71)

FIG. 32: Constraints on a generic parametrization of new
physics contributions to Bd mixing.

The result of the fit to the unitarity triangle in which we
allow ξRub, θd and rd to vary simultaneously yields

ξRub = −0.134± 0.048 , (72)

θd = −(4.0± 1.5)o , (73)

rd = 1.000± 0.057 , (74)

indicating deviations in ξRub and θd at the three sigma
level. In the upper plot in Fig. 32 we show the fit we
obtain after excluding all quantities that are sensitive
to ξRub and θd; the resulting predictions for sin 2β and
BR(B → τν) differ from their direct determination at
the three sigma level. In the lower plot in Fig. 32 we
show the corresponding two–dimensional allowed regions
in the [ξRub, θd] plane.

In conclusion, the overall status of unitarity triangle
fits is in fairly good agreement with the SM. The few
tensions we observe could be interpreted as a hint for new
physics but could also be resolved in the near future by
improvements on (1) the experimental determination of
BR(B → τν) at Belle II, (2) lattice-QCD determinations
of the semileptonic form factors, (3) the experimental
uncertainty on γ from LHCb.

5.2. Exclusive B → (K,K∗)``

Different theoretical concepts are used in the treatment
of exclusive rare semileptonic decays within the two alter-
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native kinematic regimes: large recoil (i.e., to low dilep-
ton invariant mass squared, q2) and small recoil (i.e., high
q2). However, calculations in the q2 region close to the
narrow cc̄ resonances are difficult.

Exclusive heavy-to-light B → K∗µ+µ− decays in the
low-q2 region are described by the method of QCD-
improved Factorisation (QCDF) and its field-theoretical
formulation of Soft-Collinear Effective Theory (SCET).
The decay amplitude factorises to leading order in
Λ/mb and to all orders in αs into process-independent
non-perturbative quantities in the combined limit of a
heavy b-quark and of an energetic K∗ meson: e.g.,
B → K∗ form factors and light-cone distribution am-
plitudes (LCDAs) of the heavy (light) mesons and per-
turbatively calculable quantities, which are known to
O(α1

s) [234, 235]:

T = C ξ + φB ⊗ T ⊗ φM +O(ΛQCD/mb) . (75)

which is accurate to leading order in ΛQCD/mb and to
all orders in αs.

In addition, if M is a vector V (pseudoscalar P ), the
seven (three) a priori independent B → V (B → P )
form factors reduce to two (one) universal soft form fac-
tors ξ⊥,‖ (ξP ) in QCDF/SCET [236]. The factorisation
formula Eq. (75) is well applicable in the dilepton mass
range, 1 < q2 < 6 GeV2.

If we take all these simplifications into account the
various spin amplitudes at leading order in ΛQCD/mb and
αs get linear in the soft form factors ξ⊥,‖ and also in the
short-distance Wilson coefficients. These simplifications
allow us to design a set of optimized observables, in which
any soft form factor dependence (and its corresponding
uncertainty) cancels out for all low dilepton mass squared
q2 at leading order in αs and ΛQCD/mb, as was explicitly
shown in refs. [237, 238]. In refs. [239, 240], an optimized
set of independent observables was constructed. Here,
nearly all observables are free from hadronic uncertainties
which are related to the form factors.

However, in these angular observables, the soft form
factors are not the only source of hadronic uncertain-
ties. Within the QCDF/SCET approach, a general and
quantitative method to estimate the important ΛQCD/mb

corrections to the heavy quark limit is missing.
The high q2 (low hadronic recoil) region corresponds to

dilepton invariant masses above the two narrow cc̄ res-
onances (q2 > 14 GeV2). Broad cc̄-resonances can be
treated using a local operator product expansion [241,
242]. One finds small sub-leading corrections which are
suppressed by either (Λ/mb)

2 [242] or αsΛ/mb [241].
This depends on whether full QCD or subsequent match-
ing on heavy quark effective theory in combination with
form factor symmetries [243] is adopted. Numerically,
the sub-leading corrections to the amplitude have been
estimated to be below 2 % [242]. Those due to form factor
relations are numerically suppressed by C7/C9 ∼ O(0.1).
In addition, duality violating effects have been estimated
within a model of resonances. They were found to be at
the level of 2 % of the rate, if sufficiently large bins in

FIG. 33: Global fit results obtained allowing new physics con-
tributions exclusively to [C9, C

′
9] (upper plot) and [C9, C10]

(lower plot).

q2 are selected [242]. Moreover, the heavy-to-light form
factors can be calculated using lattice calculations (see,
for instance, ref. [244]). As a consequence, this region is
theoretically well controlled.

Within the first experimental findings on new angular
observables in the exclusive decay B → K∗µ+µ− based
on the 1 fb−1 dataset, LHCb founds a 3.7σ local discrep-
ancy in one of the q2 bins for one of the angular observ-
ables [103], namely in the bin q2 ∈ [4.3, 8.63] GeV2 of the

observable P
′

5. The latter belongs to the set of optimized
observables in which form factor dependence cancels out
to first order. LHCb compared its experimental results
with the theoretical predictions in ref. [240].

This observation has been confirmed by the recent
LHCb analysis using the 3fb−1 data sets. The investi-
gation of the observable P

′

5 shows again in the new bins
q2 ∈ [4.0, 6.0] and [6.0, 8.0] deviations of 2.9σ. Therefore
the significance has not increased, but the new measure-
ment is compatible with the 1fb−1 measurement.

The deviation in the observable P ′5 can be consistently
described by a smaller C9 Wilson coefficient, together
with a less significant contribution of a non-zero C ′9 (see
for example ref. [245]). This is a challenge for the model-
building. A large number of references [30, 105–109, 246–
251] discuss consistent SM and new physics interpreta-
tions of the measured deviation in the B → K∗`+`−

mode. The results of a global fit to all LHCb B → K(∗)``
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FIG. 34: Global fit results obtained allowing for different
new physics contributions to operators involving electron and
muon currents. In the upper (lower) plot it is shown the
allowed region in the [Ce9 , C

µ
9 ] plane obtained marginalizing

against variations in Ce,µ10 (C′
e,µ
9 ).

results is presented in Fig. 33 [252, 253] using the Su-
perIso program [254, 255]. Scenarios with new physics
confined to the pair of Wilson Coefficient [C9, C

′
9] (up-

per plot) and [C9, C10] (lower plot) are considered. In a
model-independent analysis, the anomaly can be consis-
tently described by smaller C9 and C ′9 Wilson coefficients
and, to a lesser extent, by a positive contribution to C10

(we remind the reader that CSM
10 < 0).

Large contributions to the C9 are difficult to accomo-
date in typical new physics models. Indeed, the Z-boson
coupling to the leptonic vector current is suppressed by
a factor (1 − 4s2

W ) ∼ 0.04 which implies that flavour
changing effective Z − b − s couplings (that are poten-
tially enhanced in many BSM models) contribute only
minimally to the operator O9 = s̄LγµbL

¯̀γµ`. Therefore,
main stream models, for instance the minimally flavour
violating MSSM, warped extra dimension scenarios, or
models with partial compositeness, cannot accommodate

the deviation at the 1σ level. On the other hand, Z
′

mod-
els have been shown to be viable [109].

In the MSSM, we cannot generate any sizable contri-
bution to the coefficient C ′9, but also any significant con-
tribution to C9 is correlated to contributions to other
Wilson coefficients affecting the other observables. Nev-
ertheless, combining all the observables in a fit one can
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FIG. 35: Inclusive b→ s`` spectrum and QED corrections.

check the global agreement of the model with the avail-
able data [30]: The overall (global) agreement is rela-
tively good, with regions in SUSY parameter space where
the absolute χ2 is sufficiently small and an agreement at
the 1σ level is obtained.

In our opinion it is too soon to conclude whether this
anomaly is a sign of beyond the SM physics, is due to
our lack of understanding of hadronic power corrections
and/or non-perturbative charm effects, or is just a sta-
tistical fluctuation.

More recently, another small discrepancy was found.
The ratio RK = BR(B+ → K+µ+µ−)/BR(B+ →
K+e+e−) in the low-q2 region has been measured by
LHCb showing a 2.6σ deviation from the SM predic-
tion [220]. In contrast to the anomaly in the rare decay
B → K∗µ+µ− which is affected by unknown power cor-
rections, the ratio RK is theoretically rather clean. This
might be a sign for lepton non-universality.

A few recent studies [252, 256–260] address this dis-
crepancy . Fig. 34 shows that a global fit to all observ-
ables considering separately new physics contributions to
the electron and muon semileptonic Wilson coefficients
Ce9,10 and Cµ9,10 (and the corresponding chirality flipped

coefficients) favors the non-universal solutions. However,
in a two-operator fit lepton-universality, δCµ9 = δCe9 , is
disfavored by 2σ, while within the four-operator fit the
agreement is improved [252].

5.3. Inclusive B → Xs``

Finally let us discuss some recent progress on the cal-
culation of inclusive B → Xs`` (` = e, µ) decays. These
inclusive modes are controlled by perturbative QCD and
are under much stronger theoretical control than the
corresponding exclusive K and K∗ channels. In the
rest of this section we follow the discussion presented in
refs. [100–102].

In a fully inclusive transition the only observable kine-
matical variables are the invariant mass and scattering
angle of the dilepton pair (the latter is defined with re-
spect to the incoming B direction in the dilepton center-
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FIG. 36: Inclusive b→ s``: constraints on Wilson coefficients.

of-mass frame). At leading order in electroweak inter-
actions and to all orders in QCD the double differential
rate can be written as

d2Γ

dq2 dz
=

3

8

[
(1 + z2)HT (q2) + 2(1− z2)HL(q2) (76)

+ 2zHA(q2)
]
,

where HT and HL are related to the transverse and lon-
gitudinally polarized hadronic tensor. The differential
width and the normalized forward–backward asymmetry
are then:

dΓ

dq2
= HT (q2) +HL(q2) , (77)

dAFB

dq2
=

3

4

HA(q2)

HT (q2) +HL(q2)
. (78)

As for exclusive modes, it is necessary to cut the region
around the two main charmonium resonances thus iso-
lating two distinct regions at low-q2 (further divided in
the two bins [1, 3.5] GeV2 and [3.5, 6] GeV2) and high-q2

(q2 > 14.4 GeV2). The region below 1 GeV2 is mostly
controlled by the almost real photon pole and is not very
sensitive to the Wilson coefficients C9 and C10. The ef-
fect of resonances is included using the Krüger-Sehgal
method [261, 262]. Note that the effect of charmonium
resonances on the various low-q2 distributions is minimal
(only the relatively well understood tail of the J/ψ is rel-
evant) while at high-q2 they are much more prominent
(see also the discussion in ref. [263]). More importantly,
the breakdown of the OPE at high-q2 results in very large
1/m2

b and 1/m3
b power corrections that, because of our

poor knowledge of the involved hadronic matrix elements,
is a dominant source of uncertainty. Because of this the
uncertainty on the total high-q2 branching ratio (about
30%) is much larger than the corresponding one at low-
q2 (about 6%). As suggested in ref. [264], this problem
can be ameliorated by normalizing the B → Xs`` width
to the B → Xu`ν width integrated over the same q2

FIG. 37: Inclusive vs exclusive b→ s``.

range. The total uncertainty on this observable (referred
as R(s0) in ref. [102]) is then reduced to about 11% (9%
of which is due to the error on Vub and is therefore ex-
pected to be sizably reduced in the future).

An important point, that has been first noted in
ref. [100] is that impact of collinear photon emission
(enhanced by the relatively large logarithm of the ratio
m2
`/m

2
b) from the final state leptons onto the differen-

tial double decay width. These effects vanish when inte-
grated over the whole available q2 phase space but not
when one restricts the integration to various q2 bins. As
it was found in refs. [100–102] these QED corrections,
while affecting the total integrated branching ratio at
low-q2 at the 5% level with respect to the NNLO QCD
prediction, are extremely large when one considered the
quantities HL and HT for which QED effects (for the
electron channel) are -11% and +73%, respectively. In
Fig. 35 we show the differential distributions for HT,L,A
(and for the branching ratio HT +HL) with (solid lines)
and without (dashed lines) the inclusion of log-enhanced
QED corrections. It is clear that the reason for the large
effect onHT is due to a suppression of the this observable
with respect to HL (this suppression is present already
at tree-level and is not affected by QCD corrections) cou-
pled with an accidental enhancement of QED effects (the
relatively small positive shift on the branching ratio is
obtained by a small negative contribution to HL coupled
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with a larger positive shift on HL). This does not indi-
cate a breakdown of the perturbative series because the
large relative size of QED corrections is almost entirely
due to the suppression of the tree-level plus QCD contri-
bution, and not due to a large absolute value of the QED
corrections.

Experimental measurements of these inclusive observ-
ables (either by summing over exclusive final states or by
fully/partially reconstructing the recoiling B meson) can
only be performed in the clean B-factories environments.
Both BaBar [265, 266] and Belle [267] presented measure-
ments of the rates at both low- and high-q2 (Belle pre-
sented also a first measurement of the forward-backward
asymmetry [268]).

In Fig. 36 we present the bounds on the ratios
R9,10 = C9,10(µ0)/CSM

9,10(µ0) under the assumption of no
new physics contributions to the magnetic and chromo-
magnetic dipole operators (similar analyses were done,
e.g., in [269, 270]). The contours are the 95% C.L. re-
gions allowed by the BaBar and Belle experimental re-
sults; two sigma theoretical uncertainties are added lin-
early. We show the impact of the branching ratio mea-
surement in the low-q2 (red regions) and high-q2 (green
regions) and their overlap (black regions). The SM cor-
responds to the point [R9, R10] = [1, 1]. The small yellow
contour correspond to the Belle II estimated reach with
50 ab−1 of integrated luminosity, assuming that the ob-
served central values coincide with our predictions. The
region outside the dashed and dotted parabola shaped
regions are allowed by the Belle measurement of the nor-
malized forward–backward asymmetry in the two low-
q2 bins. The resulting picture is in overall agreement
with the SM expectations at the 95% C.L.. We refer to
ref. [102] for a more extensive phenomenological discus-
sion.

Finally, assuming that the anomalies in exclusive
modes are indeed due to new physics in the semileptonic
operators, one can extract allowed ranges for the inclu-
sive branching ratios (low- and high-q2) and forward–
backward asymmetries (in the two low-q2 bins) and check
whether the Belle II expected sensitivity to the inclusive
modes will suffice to observe deviations from the SM pre-
dictions. The result of this study [253] is presented in
Fig. 37. The shaded areas are the regions compatible
with a new physics interpretation of the B → (K,K∗)``

anomalies at various confidence levels, the black point is
the best fit result and the error bands correspond to the
expected Belle II total uncertainty. The red point and
error bars indicate the SM predictions (under assump-
tion of no new physics contributions). It is clear that the
future measurement of the inclusive branching ratio and
forward–backward asymmetry is able to detected the po-
tential new physics contributions hinted at by the global
fit.
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