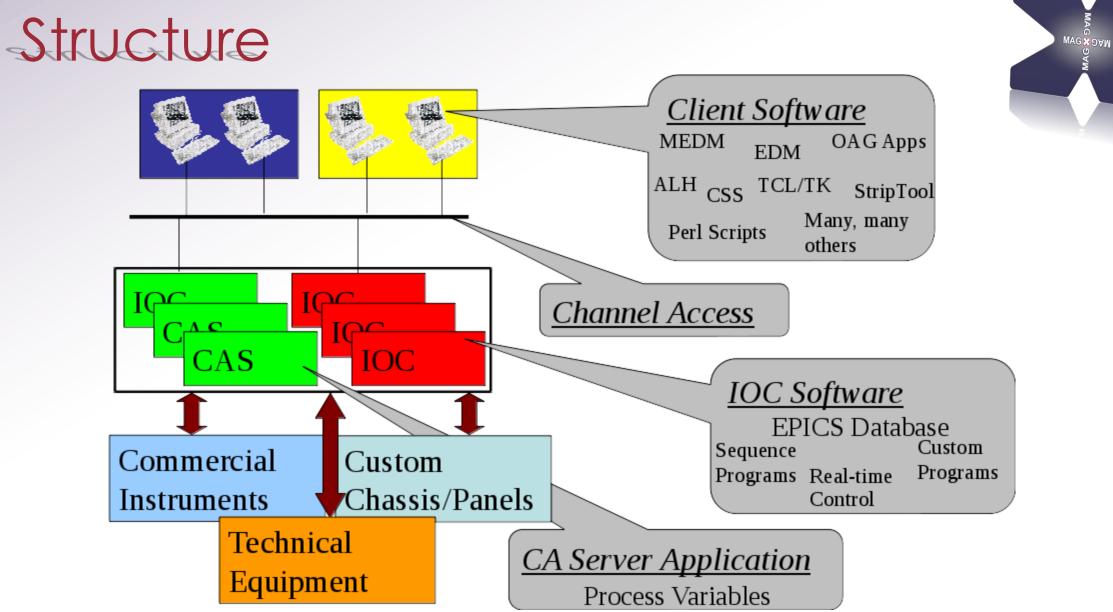
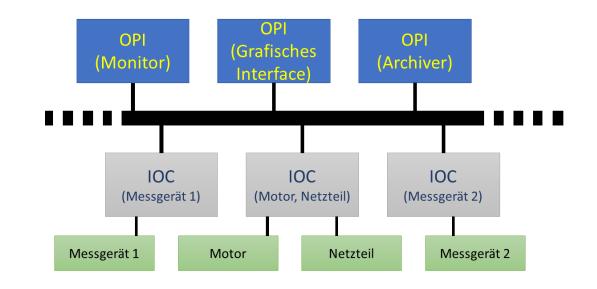
MXSlowControl

Stefan Lunkenheimer MAGIX Collaboration Meeting 2017-02-17

EPICS Overview

Status quo

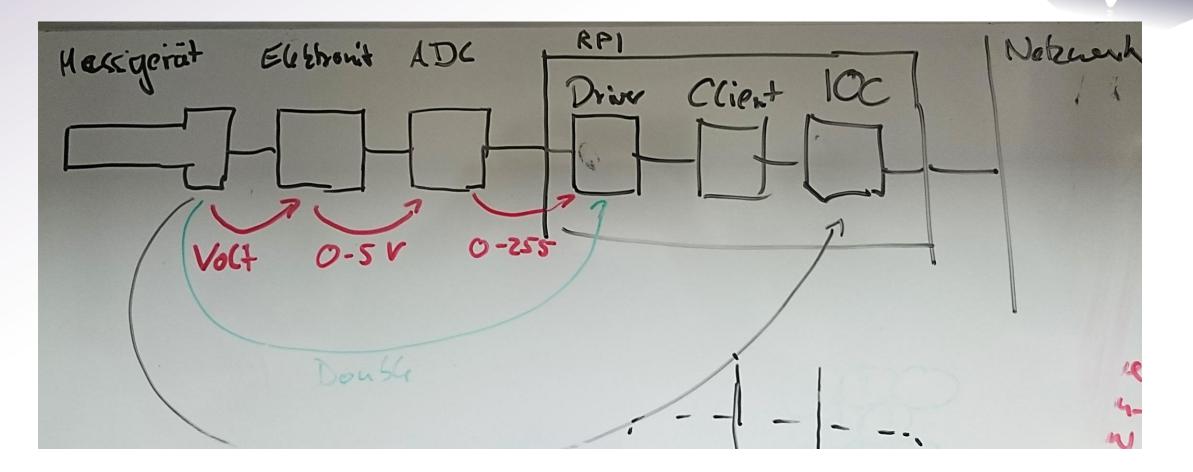

Strategy / Outlook



- Software to control physical experiments
- Distributed system
 - Multiple closed systems
- Maintained by community and external
 - > A lot of solutions available

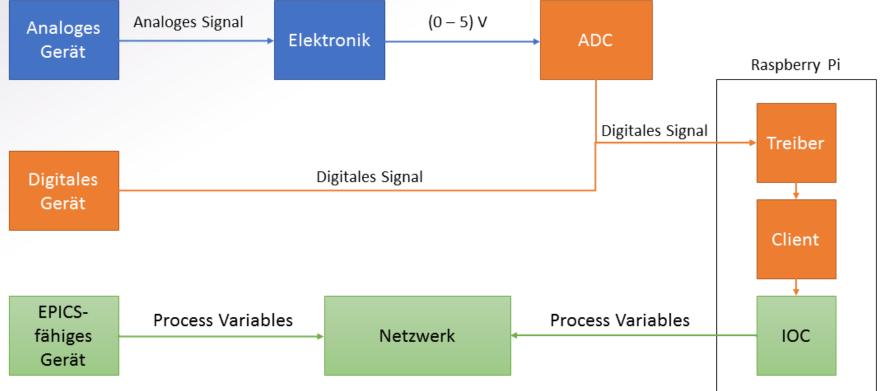
Structure

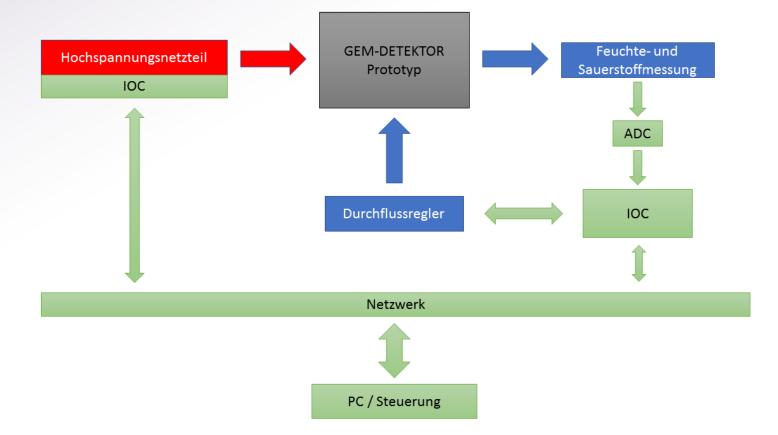
- Channel Access
 - Communication Protocol
- Input-Output Controller (IOC)
- Operator Interface
 - EPICS Clients
 - Communicate via CA


- Multiple servers (IOC's)
- Defines Process-Variables with database
- Span virtual bus (Channel Access)
- Configuration for each IOC needed

Client

- CSS, python, c++, many others
- Can get or put stuff in the PV's
- Monitoring
- Self configured


Basic device control


MAG X DAM

Basic device control

Test setup GEM-Detector

MAG 29VW

Status quo

IOC Configuration

MAG S SAM

• Basic supply of Process Variables understood

• Basic knowlegde of database structure

Communication with IOC understood

• Control of devices via caClient (python, c++)

Structure

MXcaClient

- Self made caClient in c++
 - Interface between PV's drivers
- Client loads the device driver
- Clients fill / read the PV's in fixed time intervalls
 - Polling
 - Controlling the device
- Configuration via XML (MXWare)

Strategy / Outlook

MAG & DAM

- Learn more about EPICS
- Control devices directly with IOC
 - >Streamdevice
- Improve configuration
- Build a GUI
- •

- Write drivers
- Expand/Improve caClient
- Build GUI
- Build control monitor application
 - Safety aspect
 - Logicial operations

Specific work for beam time

- A1 Interface
- Data storage
- Profi Bus pumping station
- Other Hardware

Collaboration work

- List important parameters
- Monitoring via Internet
- Discuss driver configuration individually
- Safety discussion
- Control monitor arrangement

Sharing "Tesks

Working People PRISMA BRISMA Devia drivers Com S.L. GUI S.A. Control algor this F.G. me AI Interface S.L. Control monitor P.G. General architecture S.A. Databose S.C. Network S.C. Dete stowge 5.C. Safety compt S.A. Profi Dus SA./SL./R.G. Hardware S.A. [S.L.

MAGXOAM

SFBNA の PRisma

THANK YOU FOR YOUR ATTENTION!

http://magix.kph.uni-mainz.de

Massachusetts Institute of Technology Unive

University of Ljubljana

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

<u> -</u>

Westfälische Wilhelms-Universität Münster

Example configuration

IOC Database

```
record(ai, "magix-85::debug::sinus") {
 field(SCAN,".1 second")
 field(PREC,"2")
```

```
record(ao, "magix-85::debug::offset"){
field(SCAN, "Passive")
field(VAL,"0.5")
field(PREC,"2")
field(DRVL, "-1.5")
 field(DRVH, "1.5")
```

```
record(ao, "magix-85::debug::amplitude") {
 field(SCAN, "Passive")
field(VAL,"1")
 field(PREC,"2")
field(DRVL,"0")
 field(DRVH, "2.5")
```

```
record(ao, "magix-85::debug::frequency"){
 field(SCAN, "Passive")
field(VAL,"0.1")
field(PREC,"2")
field(DRVL, "0.01")
 field(DRVH, "0.5")
```

MXcaClient configuration file

<ChannelAccess>

<PV>

<name>magix-85::debug::sinus</name> <channel>0</channel> <out>true</out> </PV> <PV> <name>magix-85::debug::offset</name> <channel>1</channel> <out>false</out> </PV> <PV> <name>magix-85::debug::amplitude</name> <channel>2</channel> <out>false</out> </PV> < PV ><name>magix-85::debug::frequency</name> <channel>3</channel> <out>false</out> </PV> <device type="debugDevice"> <name>First Sinus</name> <description> This is a simple sinus: s(t) = a*sin(t) + b</description> <opt>Parameter</opt> # device specific variables / start parameter <offset>0.5</offset> <amplitude>1</amplitude> <frequency>0.1</frequency> </device>

</ChannelAccess>