
17-Feb-17MXWare overview

1



Software framework for

• Simulation

• Analysis

• Reconstruction

• Data acquisition

• Slow control

Versatile and extensible system

• Complex configuration system for user-steering

• Plugin system for simple extensibility

• Simple and automated installation

• Developed and tested on Debian and OSX

Documentation

• All doxygen documented

• User and developer guides under writing in the wiki

17-Feb-17MXWare overview 2



•Package name: mxware

Debian repository

•Checkout MXInstall package from GIT

•Configure and install

•Cache initialization files available for each framework release)

Full rebuild

•Checkout the single packages independently

•Make sure the installed libraries are in the LD path

Custom rebuild

•BOOST and CLHEP. (ROOT for optional component)

•On Debian all dependencies automatically managed.

•On OSX, BOOST and CLHEP to be manually installed

Dependencies

17-Feb-17MXWare overview 3



• Cross-platform program to generate build systems.

• Tested on Linux and OSX to generate UNIX makefile build systems

• Able to generate XCode, Visual Studio, Eclipse and many more build projects

Cmake build generator

• MXCore, MXIO, MXRandom, MXUitil, MXMCGens, MXSlowControl

• Many plugins already developed

• More to come when necessary

• Modular development, easier to test and understand

Several subpackages

• All classes tested through unit test routines.

• Test helpers for the test units of new implementations of a main component

• Every new class should have a test unit to be included in the core libraries

Test Units

17-Feb-17MXWare overview 4



•Modify the steering file and run

•Test beam operation, rerun of an analysis…

Simple user

•Create a new plugin with additional code (analysis, simulation, 
reconstruction…). That’s yours to do whatever you want with.

• Install the plugin in your home directory

•Template build with library and plugin in the repository

Plugin development

•Add new components and functionalities to the core system.

•Reviews plugin components and add them to the common library

Core development

17-Feb-17MXWare overview 5



17-Feb-17MXWare overview

6



• Core written in C++11/14

• Actual C++, not C with classes

• Plugins could be written in other languages (not tried yet)

Programming language

• Common configuration system

• Define the extensibility system (plugin interface and class 
factories)

• Define the communication interface between modules 
(I/O system)

Core goals

17-Feb-17MXWare overview 7



•Allows to add and use new implementations without touching the old ones

•No need to recompile anything but your own code

Robust system to extend the code base

•What are the logical parts of the program

•How can communicate with them

•If already defined in another module/plugin skip this

Define component interface

•A dummy/test version of the interface is the best starting point

Write some basic implementation

•Use the existing template

•Load the new implementation in the factory

Define a factory for that interface

•Just a specification in the steering file

•Switch between implementations without recompiling anything

Choose the implementation to use

17-Feb-17MXWare overview 8



• Shared library loaded dynamically at run-time

• Defined symbol list to access the available code

• A normal shared library is linked at compile-time

What is a plug-in

• Load new interface implementations

• Executes additional code

MXWare plugins

• Core component that load available plugins and execute them

• Plugin execution customizable from the steering file

Plugin manager

17-Feb-17MXWare overview 9



•The leaves of the tree contain the data attributes to modify

•The “type” attribute allows to choose run-time implementation

•The implementations can be loaded at runtime via the plugin system

•A GUI will be developed to simplify the modifications

Configuration tree

•Each subtree can be used independently from the parent

•Great for testing purposes

•Special node to include an external steering file

•Under development

•Avoids copy and paste

Versatility

•Parsed to populate the configuration tree

•XML parser already available (BOOST component)

•The working configuration can be serialized back to a steering file

•Save the process configuration for reruns or documentation

Steering files

17-Feb-17MXWare overview 10



• All is compatible with multi-threaded applications

Multithreading

• Advanced multi-threaded logging system based on the BOOST log library

• Multiple sinks can be updated in parallel (for example log file and console)

• Details configurable in the steering file

Logging system

• Define the basic interface for the most important concepts that a 
developed class may need (Named object, configurable object and so 
on)

• Default test templates for classes that follow the concepts defined by the 
interfaces

Utility interfaces

17-Feb-17MXWare overview 11



Logging system configuration

Tells where to find the plugins

Loading of particle masses

Custom program (analytic calculation of 

DP cross-section)

Defined in a user plugin

17-Feb-17MXWare overview 12



17-Feb-17MXWare overview

13



•Base class for all data objects

IMXData

•Vector of data objects with a special iterator to simplify data access

Collection

•Map of collections with additional metadata (Event number and timestamp)

Event

•Vector of events with additional metadata contained in a configuration tree

•Each run should define a stable experimental configuration

Run

•List of run with additional metadata stored in a configuration tree

Runlist

17-Feb-17MXWare overview 14



• Loads or creates the run to process and execute a set of run processors for each of 
them

Run List Manager

• Loads events from a run or create new events and executes a set of event 
processors for each of them.

• Iterative execution possible

Run Processors

• Contain the algorithm to analyze each single run

• It should load any of the existing collection and store the results in a new one

Event processors

• Similar object for creating empty runlists, runs and events

Creators

17-Feb-17MXWare overview 15



• Integrated in the configuration systems 

• Works already

Configuration serialization

• Serialization of custom structures

• Serialization of object references

• Extensible to new structure

Data serialization

• ROOT serialization: already works but is not yet standardized in the package

• BOOST serialization: not yet developed. More generic and do not need the 
ROOT dependency

• They are not alternative to each other

Possibilities

17-Feb-17MXWare overview 16



• Collection of MC Particles

• Collection of reconstructed particles from MC processing

• Each event has all collections

• Each run represents one experimental setting

• The run list represent the whole experiment

• Histograms produced at the run and runlist level

Simulation output

• 1 collection for the raw input data

• 1 collection for the slow control data

• Several collections for the different reconstruction steps

• Each run is an experimental run

• Multiple runs analyzed together to make a scan (for example)

Testbeam output

17-Feb-17MXWare overview 17



17-Feb-17MXWare overview

18



Generate 
beam particle

Generate 
Target particle

Generate 
kinematic 

distribution of 
products

Apply a model 
correction to 

calculate 
cross-section

17-Feb-17MXWare overview 19



Describe the beam 
characteristics

•Nominal momentum

•Current

•Position

•Density distribution

Generate one MC 
Particle per call

17-Feb-17MXWare overview 20



Describe the target 
characteristics

• Density distribution

• Material

• Polarization

• Size and position

Generates the target 
particle

• Beam particle as input

• Calculate the interaction position 
based on the input parameters

17-Feb-17MXWare overview 21



Defines a list of 
detector

• Number and type of 
detector is completely 
custom

• Acceptance tree loaded 
from an external file

• Each detector is 
represented by its 
acceptance

• Acceptance includes 
efficiency

17-Feb-17MXWare overview 22



Generates the product 
particles

• Calculates the kinematics distribution 
of the products

• Stores the output particle in the 
output collection

• Use the detector information to 
calculate only if there is a chance for 
detection

Model correction

• Calculates the cross section based of 
the specific kinematics configuration

17-Feb-17MXWare overview 23



17-Feb-17MXWare overview

24



Data 
Reconstruction

First implementation operational

Slow control 
system

Configured through MXWare core

Data synchronized in the event structures

Running with Epics (external software)

Full detector 
simulation

Parametrize detector efficiencies

Interface our generators with GEANT or other similar software

DAQ Online event generation and synchronization

Yet to start

GUIs Configuration tools should have an easy to use GUI

17-Feb-17MXWare overview 25



Working 
system

The software framework works efficiently

A few people already contributing to it

Completely available through our git or debian repository

Easy to install and extend

MC 
Generators

The first practical application of the system

1 Bachelor thesis based on its use

Dark Photon, Elastic scattering and S-Factor generators already working

Test beam 
data 
reconstruction

Two master thesis already done using it

Need a bit of clean up to make it work smoothly

More 
development 
needed

More people working on it can help improve its functionalities

17-Feb-17MXWare overview 26



17-Feb-17MXWare overview

27



17-Feb-17MXWare overview

28



• Compatible with the BOOST URNG concept

• Can be used with all BOOST random distributions

• Templated according to the different numerical representations of the return 
type

• Adaptor to use all the random generator already present in the BOOST and STL 
libraries

Interface template

• Pseudo-random generators from the Numerical Recipes 3rd ed.

• Sobol Sequence generator from the Numerical Recipes 3rd ed.

Additional generators

• Custom factory to choose the generator at runtime with the configuration 
system

Configuration

17-Feb-17MXWare overview 29



•All the distributions implemented in the BOOST Random library can be 
directly used with any pseudo-random generator

•The distributions in the STL library are not compatible (but they are the 
same as those in BOOST)

•Sobol sequence cannot be reliably used with most distributions

Using pseudo-random generators

•N-dimensional distributions need n different sequences not n calls to 
the same sequence.

•All distributions implemented in available libraries call n-times are 
incompatible with the way a sobol sequence is implemented

•An implementation for uniform distribution is available. 

•Need to find a better general solution

Using quasi-random sequences

17-Feb-17MXWare overview 30



17-Feb-17MXWare overview

31



• Whatever comes from the electronics

Raw data

• Processed data per channel

• Define charge and time of each signal

Pulses

• 3-dimensional point in space 

Hit

• Particle trajectory in space

• Not yet defined in the code

Track

17-Feb-17MXWare overview 32


