Status of the MAGIX Spectrometer Design

Julian Müller MAGIX collaboration meeting 2017

Magneto Optic Design

Requirements

- relative momentum resolution $\frac{\Delta p}{p} < 10^{-4}$
- resolution of the scattering angle $\Delta \theta < 0.05^{\circ}$ (0.9 mrad)

Assumptions for the design

- MESA beam spot size of 100 μm
- detector resolution 50 μm
- multiple scattering in the detector $\Delta\theta = \Delta \varphi \approx 0.2^\circ$

Design process

MAGXDAM

Field Calculations

R885

P₁

Z

 $x \wedge$

Dipole

R1250

- uniform field B = 0.7 T
- pole gap 100 mm

P₂

• 2^{nd} order polynomials p_1 , p_2 to correct for aberrations

- Quadrupole • axial symmetry B = g r
- $g = 2.02 \frac{\text{T}}{\text{m}}$
- hyperbolic shaped poles

Field Calculations

Field between two thin electrodes

- avoid field enhancement at the edges
- round of the edges in the shape of an equipotential line ⇒ Rogowski-Profiles

Rogowski-Profiles

• describe field between two electrodes

$$x = \frac{a}{\pi}(\varphi + e^{\varphi}\cos\psi), \qquad y = \frac{a}{\pi}(\psi + e^{\varphi}\sin\psi)$$

field lines for $\varphi = const.$ (blue)
equipotential lines for $\psi = const.$ (green)

 no field enhancement along the 90°-Rogowski-Profile (red)

$$x = \frac{a}{\pi}\varphi, \qquad y = \frac{a}{\pi}\left(\frac{\pi}{2} + e^{\varphi}\right)$$

MAGXOAM

Magnet Optics in the Midplane

Midplane

- symmetry plane of the spectrometer
- the magnetic field is perpendicular everywhere
- parallel to the dispersive plane

Magnet Optics in the Midplane

Determine transfer matrices

- $\begin{pmatrix} \Delta x \\ \Delta \varphi \\ \Delta y \\ \Delta \theta \end{pmatrix}_F = \begin{pmatrix} A_{4 \times 4} \\ A_{4 \times 4} \end{pmatrix} \begin{pmatrix} \Delta p \\ \Delta \varphi \\ \Delta y \\ \Delta \theta \end{pmatrix}_T$ entries in $A: \frac{dx_F}{dp_T}, \frac{dx_F}{d\varphi_T}, \dots$
- local approximation to the mapping of the spectrometer
- different *A* for each particle track

Resolution

- resolution out of the inverse map $\Delta_T = A_{4\times 4}^{-1} \Delta_F$
- Δ_F fixed by: focal plane detector, beam spot size
- $\frac{\Delta p}{n} = 6.11 \times 10^{-5}$ (on average)
- $\Delta \theta = 0.013^{\circ}$ (on average)

Drawings are not in scale!

Finite Elements Simulation with CST

Dipole Magnet

- 1 mm air gap between the iron yoke and the pole pieces
- no saturation

Quadrupole Magnet

- can be designed smaller
- room for improvement

8

MAG

Magnet Optics with the Field Data

2500-

Interpolation of the field data

- 3D grid of data points, 1 cm distance between two points
- interpolation of the surrounding data points

Resolution

- lower resolution compared to the calculated field
- additional numerical errors caused by the interpolation
- ⇒ Avoid numerical errors by a fit of the fringe fields (only accurate in the midplane)

Comparison of the two Methods

Resolution

- calculation $\frac{\Delta p}{p} = 6.11 \times 10^{-5}$
- simulation (and fit) $\frac{\Delta p}{p} = 6.14 \times 10^{-5}$
- comparable results with both methods
- angular resolution is still bad

Results of the first Design

- Our goals for the resolution can be achieved with this setup
- First estimation of the acceptance

 $\frac{\Delta p}{p} = 45\%$, $\Delta \varphi = \pm 3.4^{\circ}$, $\Delta \theta = \pm 1.6^{\circ}$, $\Delta y = \pm 50 \text{ mm}$

- Focal plane size of 120 x 30 cm²
- Minimum angle 14° (considering only the geometry)
- Size of the experiment: 6 m in diameter

Things to do

Optics

- Field map studies for different field intensities for momenta of 100 MeV/c and lower
- Detailed simulations for a better reference

Magnets

- Reduce the size of the magnets?
- Optimize the geometry of the dipole and the quadrupole
- No shielding for the beam pipe yet

Spectrometer

- Vacuum chamber, connection to the scattering chamber
- Infrastructure: cooling, vacuum pumps, collimator, drive, ...
- Detector housing

SFBNA の PRisma

THANK YOU FOR YOUR ATTENTION!

http://magix.kph.uni-mainz.de

Massachusetts Institute of Technology

University of Ljubljana

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Westfälische Wilhelms-Universität Münster

Comparison with the A1 Spectrometers

		MAMI/A1		MESA
Spectrometer	А	В	С	\boldsymbol{S}_1 , \boldsymbol{S}_2
Configuration	QSDD	D	QSDD	QD
Height (without detectors) [mm]	5500	5160	4750	1830
Length of one arm [mm]	7865	8400	6400	2800
Central Momentum [MeV/c]	665	810	490	200
Minimum Angle	18°	15.1°	18°	14°
Momentum Acceptance	20%	15%	25%	45%
Solid Angle [msr]	28	5.6	28	6.8
Rel. Momentum Resolution	10-4	10-4	10-4	< 10-4
Angular resolution at Target [mrad]	< 3	< 3	< 3	< 0.9

MAG X DAM

Acceptance of the Spectrometer

φ[deg]

Acceptance

- parameter space in which incoming particles can be detected
- compact 4D space with the coordinates p, φ, y, θ
- only the shape of the boundary is important

Calculation

- generate particle tracks with random initial parameters
- divide area in half, alternately for each coordinate
- areas were all tracks hit, or all tracks missed can be ruled out

Results after 24 iterations

 $\frac{\Delta p}{p} = 45\%$ $\Delta \varphi = \pm 3.4^{\circ}$ $\Delta y = \pm 50 \text{ mm}$ $\Delta \theta = \pm 1.6^{\circ}$

Fit of the Fringe Fields

Fit functions

•
$$f_1(x) = B_{\max}\left(\frac{1}{e^{\frac{x-p}{b}}+1} - 1\right)$$

 $f_2(x) = B_{\max}\left(\frac{1}{e^{\frac{p-x}{b}}+1} - 1\right)$

• fits only accurate in the midplane

Resolution

•
$$\frac{\Delta p}{n} = 6.14 \times 10^{-5}$$

• no improvement of $\Delta\theta$ with the fit

 $f_1(x)$ and $f_2(x)$ can also be used for the quadrupole field

MAG

Magneto Optic Design

Dipole

- like a prims in geometric optics
- splits up incoming particles by their momenta
- dispersion

 $D = \frac{\Delta x_F}{\Delta p_T}$

curved edges to correct for aberrations

Quadrupole

- like a lens in geometric optics
- one focusing and one defocusing direction

Dispersive plane x-z

- point-to-point focusing
- high momentum resolution at focal plane, the first detector plane

Non-dispersive plane y-z

- parallel-to-point focusing
- determination of the scattering angle θ by measuring y in the focal plane

MAGXOAM