DARK Mo ${ }_{0} \mathrm{AGIX}_{\mathrm{o}}$

Dark photon searches at MAGIX

U(1) Gauge boson

- Carrier of an unknown interaction between unknown particles
- Massive (mass unknown)
- No direct coupling with any SM field

Kinetic mixing

- Same quantum numbers of the SM photon
- Transitions mediated by loops at unknown scales
- Assuming a particle of any mass charged under both fields.
- Mixing degree parameterized by $\varepsilon^{2}=\frac{\alpha^{\prime}}{\alpha}$
- α^{\prime} is the effective SM coupling

Replace the SM photon in allowed processes

- Bremsstrahlung
- Schwinger term in muon magnetic moment
- Electron pair production

Observable differences

- Kinematic differences due to the particle mass
- Cross section difference due to the additional diagrams

Visible decays

- Relevant branching ratio of $\gamma^{\prime} \rightarrow S M$
- Possible if the dark photon is the LDP
- Fixed decay product invariant mass

Invisible decays

- The dark photon decays in the dark sector
- Likely if the dark photon is not the LDP
- Reasonable to assume a complex dark sector (it should represents up to 85% of the universal mass)

Bump hunting

- The DP decay products have a welldefined invariant mass
- Competing background are the similar SM photon processes
- Needs to locate a narrow "bump" on the continuous spectrum

Fast ongoing developments

- Many new running experiments quickly filling the holes
- Will we still be competitive in $4 / 5$ years?

Missing mass

- Measure all the final products
- Measure the missing invariant mass
- It's challenging to tag the proton

Almost virgin territory

- Almost no constraint by current experiments
- Several competing experiments in development
- Important contributions to be made

MAGIX DP
 SIMULATION

First benchmark of the MXWare software

- Extensible and configurable system
- More on Friday

Event generator

- Custom beam, target and detector representation
- Pseudo- or quasi-random generator
- Complete event generation for further analysis
- Fast direct histogram generation

Fast detector simulation

- The detector are represented by their phase space acceptance
- Detection efficiency parameterized in the acceptance

Bachelor thesis of F. Berressem

Full phase space generator

- Customizable phase space constraints
- Electron and proton angles and momenta
- Dark photon mass
- Restrictions to reduce run time

Experimental parameters

- 105 MeV electron beam
- 10 days run time
- Luminosity $1.98710^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

SETUP OPTIMIZATION

$\mathbf{m}\left(\mathrm{Y}^{\prime}\right)$	Electron spectrometer		Proton spectrometer		10-days event couns
	$\Theta\left[{ }^{\circ}\right]$	$\mathrm{P}[\mathrm{MeV}]$	$\Theta\left[^{\circ}\right]$	$\mathrm{P}[\mathrm{MeVI}$	
15	14	40.87	71.03	10.02	4.68×10^{6}
30	18	40.74	51.03	17.36	157722
45	16	30.5	49.05	29.74	28924

Scattered e Momentum and θ

Scattered p^{+}Momentum and θ

CONCLUSIONS

Implement background process simulation	Bethe-Heitler
Implement the visible decad generator	And the bump hunting algorithm
Improved detector representation	Another possible student project
Adaptive Monte Carlo generator	To reduce the run time and simulation errors
	One of the general improvements of the simulation package
Putting all together	Compute the MAGIX sensitivities for both processes complete detector simulation package

