Nucleosynthesis ${}^{12}C(\alpha,\gamma){}^{16}O$ at MAGIX/MESA

Stefan Lunkenheimer MAGIX Collaboration Meeting 2017

S-Factor

Simulation

Outlook

MAG & DAM

S-Factor

Stages of stellar nucleosynthesis

- Hydrogen Burning (PPI-III & C
 - Fuel: proton
 - $T \approx 2 \cdot 10^7 \text{ K}$
 - Main product: ⁴He
- Helium Burning
 - Fuel: ⁴He
 - $T \approx 2 \cdot 10^8 \text{ K}$
 - Main product: ¹²C, ¹⁶O

NO Chain)				120 0.40 MeV	130 8.58 MS	140 70.606 S	150 122.24 S	160 STABLE 99.762%	170 STABLE 0.038%	I
				Р	εpz 100.00% ε: 100.00%	e: 100.00%	€: 100.00%			
10N			11N 1.58 MeV	12N 11.000 MS	13N 9.965 M	14N STABLE 99.634%	15N STABLE 0.366%	16N 7.13 S	4	
P: 100.00%			P: 100.00%	€: 100.00%	€: 100.00%			β-: 100.00% β-α: 1.2E-3%	β-: β-	
		8C 230 KeV	9C 126.5 MS	10C 19.290 S	11C 20.334 M	12C STABLE 98.89%	13C STABLE 1.11%	14C 5700 Y	15C 2.449 S	¢
		P: 100.00% a	е: 100.00% ер: 61.60%	ε: 100.00%	e: 100.00%			β-: 100.00%	β-: 100.00%	β-: β-1
	6B	7B 1.4 MeV	8B 770 MS	9B 0.54 KeV	10B STABLE 19.8%	11B STABLE 80.2%	12B 20.20 MS	13B 17.33 MS	14B 12.5 MS	9
	2P	a P	εα: 100.00% ε: 100.00%	2a: 100.00% P: 100.00%		00.2/0	β-: 100.00% B3A: 1.58%	β-: 100.00%	β-: 100.00% β-n: 6.04%	β-0 β-1
	5Be	6Be 92 KeV	7Be 53.22 D	8Be 5.57 eV	9Be STABLE 100 %	10Be 1.51E+6 Y	11Be 13.81 S	12Be 21.49 MS	13Be 2.7E-21 S	4
	Р	a: 100.00% P: 100.00%	e: 100.00%	a: 100.00%		β-: 100.00%	β-: 100.00% β-α: 3.1%	β-: 100.00% β-n≤ 1.00%	N	β-0 β-1
ЗLi	4Li 6.03 MeV	5Li ≈1.5 MeV	6Li STABLE 7 59%	7Li STABLE 92 41%	8Li 839.9 MS	9Li 178.3 MS	10Li	11Li 8.59 MS	12Li <10 NS	
Р	P: 100.00%	P: 100.00% a: 100.00%	1.5070	02.11%	β-α: 100.00% β-: 100.00%	β-: 100.00% β-n: 50.80%	N: 100.00%	β-: 100.00% β-na: 0.027%	N	
	3He STABLE	4He STABLE	5He 0.60 MeV	6He 806.7 MS	7He 150 KeV	8He 119.1 MS	9He	10He 300 KeV		-
	0.000137%	39.333003/	N: 100.00% a: 100.00%	β-: 100.00%	N	β-: 100.00% β-n: 16.00%	N: 100.00%	N: 100.00%		
1H STABLE 99.985%	2H STABLE 0.015%	3H 12.32 Y	4H 4.6 MeV	5H 5.7 MeV	6H 1.6 MeV	7H 29E-23 Y				
00.003/	0.013%	β-: 100.00%	N: 100.00%	N: 100.00%	N: 100.00%	2N7				
	Neutron 10.23 M									
	β-: 100.00%									Л

Helium Burning in red giants

- Main reactions:
 - $3\alpha \rightarrow {}^{12}C + \gamma$ ${}^{12}C(\alpha, \gamma){}^{16}O$
- ¹²C/¹⁶O abundance ratio
 - Further burning states
 - Nucleosynthesis in massive stars

Cp. Hammache: ${}^{12}C(\alpha,\gamma){}^{16}O$ in massive star stellar evolution

MAGXDAM

• Fusion reaction below Coulomb barrier $kT \sim 15 \text{ keV} @ T = 2 \cdot 10^8 \text{ K}$

- Transmission probability governed by tunnel efffect
- Gamow-Peak E_0
 - Convolution of probability distribution
 - Maxwell-Boltxmann
 - QM Coulomb barrier transmission
 - Depends on reaction and temperature

MAG X DAM

Nonresonant Cross section

$$\sigma(E) = \frac{1}{E} e^{-\frac{2\pi Z_1 Z_2 \alpha c}{\nu}} S(E)$$

• e - Factor = probability to tunnel through Coulomb barrier

v = velocity between the two nuclei

 α = fine structure constant

 Z_1, Z_2 = Proton number of the nuclei

• S(E) = Deviation Factor from trivial model

Gamow-Peak for ${}^{12}C(\alpha,\gamma){}^{16}O$

• Gamow-Peak ($T \approx 2 \cdot 10^8$ K)

$$E_0 = \left(\frac{1}{2}b \cdot k \cdot T\right)^{\frac{2}{3}} \approx 300 \text{ keV}$$

• k = Bolzmann constant

•
$$b = \pi \alpha Z_1 Z_2 \sqrt{2\mu c^2}$$

- $\mu = \frac{M_1 M_2}{M_1 + M_2}$ reduced mass
- Gamow Width
 - $\Delta = 4\sqrt{E_0 kT/3}$

- MAGXOW
- Precise low-energy measurements required
 - ≻MAGIX@MESA
- Direct measurements never done $@E_{\rm cm} < 0.9 \, {\rm MeV}$

Cp. Simulation of Ugalde 2013

Measurement of S-Factor

MAGXOW

Measurement at MAGIX@MESA

- Time reverted reaction ¹⁶O(γ, α)¹²C
 Cross section gain a factor of × 100
- Inelastic e^- scattering on oxygen gas
- Measurement of coincidence (e⁻, α)
 > suppress background
 > α-Particle with low energy
- High Luminosity

 α

MAGX DAM

 e^{-}

 ^{16}O

Inverse Kinematik

- Time reversed reaction: $\sigma(E_0) \sim 10^{-15} \text{barn}$
- High Energy resolution required
 MAGIX

Cp. Simulation of Ugalde 2013

Simulation

Introduction

- MXWare (see talk Caiazza)
- Monte Carlo Integration
- Fix Beam Energy
- Target at Rest
- Simulation acceptance 4π

Kinematik

• Momentum transfer

$$q^2 = -4EE'\sin^2\frac{\theta}{2}$$

Photon Energy

$$\nu = \frac{W^2 - M^2 - q^2}{2M}$$
 with

- $W^2 = (p_{\gamma}^{\mu} + p_0^{\mu})^2$ invariant mass of photon and oxygen
- M = Oxygen mass
- Inelastic scattering cross section

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha^2 E'^2}{q^4} \left[W_2(q^2,\nu) \cdot \cos^2\left(\frac{\theta}{2}\right) + 2W_1(q^2,\nu) \cdot \sin^2\left(\frac{\theta}{2}\right) \right]$$

Inelastic scattering cross section

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha^2 E'^2}{q^4} \left[W_2(q^2,\nu) \cdot \cos^2\left(\frac{\theta}{2}\right) + 2W_1(q^2,\nu) \cdot \sin^2\left(\frac{\theta}{2}\right) \right]$$

Virtual Photon flux

MAG X DAM

Relation beween structural functions and the transversal / longitudinal part of the virtual photon cross section σ_T , σ_L

$$W_1 = \frac{\kappa}{4\pi^2 \alpha} \sigma_T \qquad W_2 = \frac{\kappa}{4\pi^2 \alpha} \left(1 - \frac{\nu^2}{q^2}\right)^{-1} (\sigma_L + \sigma_T) \qquad \text{with} \quad \kappa = \frac{W^2 - M^2}{2M}$$

So we get

$$\frac{d^3\sigma}{d\Omega dE'} = \Gamma(\sigma_T + \varepsilon\sigma_L)$$

with

$$\Gamma = \frac{\alpha \kappa}{2\pi^2 |q^2|} \cdot \frac{E'}{E} \cdot \frac{1}{1-\varepsilon} \qquad \qquad \varepsilon = \left(1 - 2\frac{\nu^2 - q^2}{q^2} \tan^2\left(\frac{\theta}{2}\right)\right)^{-1}$$

For
$$|q^2| \to 0$$
: σ_L vanish and $\sigma_T \to \sigma^{\text{tot}}(\gamma^* + {}^{16}O \to X)$
$$\frac{d^5\sigma}{d\Omega_e dE' d\Omega^*} = \Gamma \frac{d\sigma_v}{d\Omega^*}$$

• Direct cross section -> Measurement

• Compare with inverse cross section -> extract the S-Factor

• Calculate time reversal factor

Time reversal Factor

Phase space examination under T-symmetry invariance

$$\frac{\sigma_{i \to f}}{\sigma_{f \to i}} = \frac{(2I_3 + 1)(2I_4 + 1)}{(2I_1 + 1)(2I_2 + 1)} \cdot \frac{|\vec{p}|_f^2}{|\vec{p}|_i^2}$$

Spinstatistic:

I=0 for even-even nuclides (⁴He, ¹²C, ¹⁶0) in ground state

 $(2I_{\gamma}+1)=2$ for photon.

So we get

$$\sigma({}^{16}O(\gamma,\alpha){}^{12}C) = \frac{1}{2} \frac{\left(W^2 - \left(m_{\text{He}} + m_{\text{C}}\right)^2\right) \left(W^2 - \left(m_{\text{He}} - m_{\text{C}}\right)^2\right)}{\left(W^2 - m_{0}^2\right) \left(W^2 - m_{0}^2\right)} \cdot \sigma({}^{12}C(\alpha,\gamma){}^{16}O(\alpha,\gamma){}^{16$$

Cp. Mayer-Kuckuk Kernphysik: Chapter 7.3

MAGXDAM

Result of first simulations

Nonresonant cross section $\sigma({}^{16}O(\gamma, \alpha){}^{12}C)$

Simulation correlate to the results of

Ugalde

- 4π Simulation
- $\sim 0.1 \text{ mHz}$ Reaction Rate by E_0 with

 $L \sim 10^{34} \, cm^{-2} s^{-1}$

- > Worst case Luminosity (see later talks)
- Now simulation with
 - e^{-}, α Acceptance needed.

Outlook

• Finish simulation

≻electron acceptance

 $\geq \alpha$ -Particle acceptance

• Preliminary results

>Need measurement on angles smaller than Spectrometer coverage

>0 degree scattering -> New Theoretic calculations

α -Detection

MAG X 9VW

Low kinetic energy

≻~ 20 MeV

Needs specialized detector

≻Silicon-Strip-Detector

• Choose and Test Silicon-Strip-Detectors in the Lab

SFB書 PRisma

THANK YOU FOR YOUR ATTENTION!

http://magix.kph.uni-mainz.de

Massachusetts Institute of Technology

University of Ljubljana

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

-

Westfälische Wilhelms-Universität Münster

Production factor

Waver and Woosley Phys Rep 227 (1993) 65

Two-Body Reaction

In the center of mass frame ${}^{16}O(\gamma^*, \alpha){}^{12}C$

Electron scattering

Cross section inelastic scattering (cp. Chapter 7.2)

$$\frac{d^2\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)^*_{\text{Mott}} \left[W_2(q^2,\nu) + 2W_1(q^2,\nu)\tan^2\left(\frac{\theta}{2}\right) \right]$$

With structural functions W_1, W_2

And Mott crossection (in this case)

$$\left(\frac{d\sigma}{d\Omega}\right)^*_{\text{Mott}} = \frac{4\alpha^2 E'^2}{q^4} \cos^2\left(\frac{\theta}{2}\right)$$

We get (cp. Halzen & Martin Chapter 8)

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha^2 E'^2}{q^4} \left[W_2(q^2,\nu) \cdot \cos^2\left(\frac{\theta}{2}\right) + 2W_1(q^2,\nu) \cdot \sin^2\left(\frac{\theta}{2}\right) \right]$$

Basic of Simulation

Connection between count rate and cross section

$$N = \int_{\Omega} A(\Omega) \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \mathrm{d}\Omega \cdot \int L \mathrm{d}t + N_{\mathrm{BG}}$$

With

- L: Luminosity
- N: Number of counts
- $A(\Omega)$: Acceptance (1 full accepted, 0 not detected)

Monte Carlo Integration

Definition of mean value in volume *V*:

$$\langle f \rangle = \frac{1}{V} \int_{V} f(x) d^{n} x$$

Estimator for mean value:

$$\langle f \rangle \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Monte-Carlo Integration:

$$\int_{V} f(x)d^{n}x = \langle f \rangle \approx \frac{V}{N} \sum_{i=1}^{N} f(x_{i}) \pm \frac{V}{\sqrt{N}} \sqrt{\langle f^{2} \rangle - \langle f \rangle^{2}}$$

Strategies for numerical improvements:

- Improve convergence $1/\sqrt{N}$
- Improve variance $\sqrt{\langle f^2 \rangle \langle f \rangle^2}$

Cross section simulation

$$\int \frac{d\sigma}{d\Omega_e dE_e d\Omega^*} d\Omega_e dE_e d\Omega^*$$

Transform $(\Omega, E) \to (W, 1/q^2, \phi)$ with $\det J = q^4 \frac{W}{2MEE'}$

With Monte-Carlo Integration:

$$\int \frac{d\sigma}{d\Omega_e dE_e d\Omega^*} d\Omega_e dE_e d\Omega^* = \frac{V}{N} \sum_i \det J \cdot \frac{d\sigma}{d\Omega_e dE_e d\Omega^*} (W, 1/q^2, \phi, \Omega^*)$$

Define $\omega_i = V \cdot \det J \cdot \frac{d\sigma}{d\Omega_e dE_e d\Omega^*}$

So we get

$$\omega_{i} = q^{4} \frac{W}{2MEE'} \cdot v \cdot \Delta \phi \cdot \Delta W \cdot \Delta \cos \theta^{*} \cdot \Delta \phi^{*} \cdot \Gamma \cdot \frac{d\sigma_{v}}{d\Omega^{*}}$$