

MESA project status

MAGIX workshop February, 17 2017 Kurt Aulenbacher for the MESA project team

Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter

- Building Overview and Accelerator Layout
- Cryomodule Production Status
- MAGIX beam dynamics issues
- Timelines : components, building, installation, comissioning

Outline

PRISMA

MESA Building Overview

Trade off: Project delay ~3 years due to civil construction time, accelerator layout needed to be adapted to the new situation

MESA Accelerator Layout

Double sided recirculation design with normalconducting injector and superconducting main linac

Two different modes of operation:

- EB-operation (P2/BDX experiment): polarized beam, up to 150 μA @ 155 MeV
- ERL-operation (MAGIX experiment): (un)polarized beam, up to 1 (10) mA @ 105 MeV

MESA Cryomodules

Cryomodules are the backbone of the new accelerator

We ordered Cryomodules of the 'Rossendorf'-type (2 x 9-cell TESLA/XFEL cavities), which are in use at ELBE will be used for MESA

- → we applied some adaptations in order to allow 1 mA ERL operation: (PhD thesis T. Stengler)
- added tuners with piezo elements (XFEL/Saclay-type)
- used sapphire windows at HOM feedthroughs + many smaller improvements
- → maximum beam current with reasonable effort currently being investigated

in Accelence-PhD project (Christian Stoll), realization is PRISMA+ project.

Picture: HZDR

Project duration until today: 20 months

- Cavities and couplers are completed
- Cavity next step: Helium tank welding and cold acceptance tests at DESY (March)
- Couplers next step: rf power-conditioning at HZDR (March)
- Cryostat Vessels have been completed (January 2017).
- 4K/2K distribution box developed together with DESY (Final design review 15/Feb)
- After succesful tests (?)cavity string assembly can start in the clean room at RI

(earliest: April/May)

- → Delivery of the first module planned End June 2017 second in August
- → Testing still possible at HIM until spring 2018

Cryomodules-preparing for the test phase

Summer 2016 "Helmholtz Institut Mainz" (HIM) is now ready for operation (Installations for Cryomodukes need considerable effort!)!

Test bunker for SRF cryomodules

⁰¹ June 2016

He: Lq. Helium supply line from liquifier in nuclear physics institute: >50l/hour through 220 m long pipe demonstrated. P: 4g/s pump stage at 16mbar has been ordered.
I: Instrumentation platform, 15kW semiconductor amplifier has been ordered, delivery 4/2017
C: Clean room for cryomodule maintenance. B=Bunker (installed by now...)

BEAM DYNAMICS FOR MESA/MAGIX Energy spread in recirculating electron linacs

Work by Florian Hug, R. Heine , D. Simon

Motivation

Acceleration in isochronous vs. non-isochronous recirculators

Outline

MESA

IOHANNES GUTENBERG UNIVERSITÄT MAINZ

- External beam operation
- ERL operation

MAMBO stability: influence on MESA operation

Summary and Outlook

Goal: Provide excellent and stable beam for experiments

e.g. line-width in electron scattering experiments:

$$\Delta E_{FWHM} = \sqrt{(\Delta E_T)^2 + (\Delta E_{Sp})^2 + (\Delta E_B)^2}$$

Motivation

 \rightarrow Different error contributions sum up statistically independent

Typical values:

$$\Delta E_T/E_T \approx 1.5 \cdot 10^{-4}$$
 $\Delta E_{Sp}/E_{Sp} \approx 1.3 \cdot 10^{-4}$

→ Requirements on electron beam (not being the major contribution): $\Delta E_{rms}/E < 1 \cdot 10^{-4}$ (+excellent long term beam stability)

Acceleration in electron linacs

For relativistic electrons (v≈c): almost no changes in longitudinal position within bunch

Acceleration on crest of the rf-wave:

- → Short bunches needed because bunchlength causes energy spread!
- → Particles stay "frozen" at their longitudinal position within the bunc

Convenient for long linacs with many cavities:

Acceleration on crest of rf field with shortest possible bunches

 \rightarrow Errors scale with \sqrt{N} (N = number of cavities)

In (short) few turn recirculators:

Amplitude errors of accelerating cavities can add up coherently over all turns \rightarrow no averaging of errors when t_{linac} << τ_{cavity}

→ Energy spread can exceed experimental requirements

- Common operation mode for microtrons and synchrotrons
- Acceleration on edge of rf field
- Different time of flight for particles having different energies

- → Particles perform synchrotron oscillations in longitudinal phase space
 Half- or full integer oscillations lead to reproduction of the longitudinal phase space at injection [*Herminghaus, NIM A 305 (1991) 1*].
- → complete compensation of rf phase- and amplitude jitters possible

Simulations for a new longitudinal working point

Goal: Find optimal combination of r_{56} and Φ_{s} for MESA 6-pass external beam mode

- Import longitudinal phase space from MAMBO 150 μA simulation
- 2. Create randomized cavity parameters (4 cavities, $\Delta A_{rms} = 1 \cdot 10^{-4}$, $\Delta \phi_{rms} = 0.1^{\circ}$)
- 3. For each pair of r_{56} and Φ_{s} track each particle through the accelerator

 $E_{i+1} = E_i + (A + \Delta A)\cos(\phi_s + \delta\varphi + \Delta\phi)$ $\varphi_{i+1} = \varphi_i + r_{56} \cdot \delta E / E_{ref} \cdot 156^{\circ}$

4. Calculate rms energy spread for each pair of $\rm r_{56}$ and $\Phi_{\rm S}$

2 x 10⁻⁴

r₅₆ [mm/%]

5 x 10

1 x 10

-1

0

-5 best energy spread at: \rightarrow -10 r₅₆ = -2.6 mm/% and φ_s [deg] Φ_{s} = -5.8° 8000000000000 -15 $\Delta E_{\rm rms} / E = 5.5 \cdot 10^{-5}$ -20 isochronous: $\Delta E_{rms}/E = 3.4 \cdot 10^{-4}$ 0 -25 -30 -5 -3 -2 -6 -4

0

1 x 10⁻⁴

MESA: ERL Operation

Compare the two different ERL operation modes:

isochronous operation

Accelerating and decelerating bunches in phase with maximum/minimum of rf-field

non-isochronous operation

- Decelerating bunches re-enter cavities at a different phase
- → possible disturbance on accelerating phase as well

→ On the non-isochronous working efficiency of energy recovery decreases
 → Maybe challenging for rf-control system to sustain desired accelerating field

MESA: ERL Operation

Simulations for isochronous ERL operation

- Only 4 passes in ERL mode
- High space charge forces at maximum beam current
- 1. Import longitudinal phase space from MAMBO 1 mA simulation
- 2. Create randomized cavity parameters (4 cavities, $\Delta A_{rms} = 1 \cdot 10^{-4}$, $\Delta \phi_{rms} = 0.1^{\circ}$)
- 3. Track each particle through the accelerator

$$E_{i+1} = E_i + (A + \Delta A)\cos(\delta \varphi + \Delta \phi)$$
$$\varphi_{i+1} = \varphi_i$$

4. Calculate rms energy spread and longitudinal phase space

Results for 4-pass isochronous ERL mode:

Phase space dominated by cosine shape of accelerating field

$$\Delta E_{\rm rms}/E = 7.16 \cdot 10^{-4}$$

Phase [deg]

MAMBO : ERL Operation

Injector properties affecting 4-pass isochronous ERL mode:

- → shorter bunches at higher energy spread can improve energy spread at experiment
- → MAMBO is optimized for best energy spread so far

Maybe a different non-isochronous scheme in ERL operation possible?

- Use the double sided design of MESA
- First two passes acceleration on edge
- Use r₅₆ for a half turn in phase space
- Second two passes acceleration on opposite edge
- Use r₅₆ for a half turn in phase space (other direction)
- end up with better energy spread
- Deceleration vice-versa

 $\Delta E_{\rm rms}/E = 2.68 \cdot 10^{-4}$ (28.8 keV @ 105 MeV)

further optimization maybe possible by better matching to injector beam

Going down from $105 \rightarrow 50$ Zero order:

- Varying iMAMBO probably very tedious and detrimental since Imax~pin
- -Achieve 50 MeV+x by reducing energy gain per turn

(27,5, 50MeV)

- First order: But defelction angles scale liek energies 105/55=1,0909 is not equal 50/27,5 =1,81

$$\Delta E_{\rm rms}/E = 2.68 \cdot 10^{-4}$$
 (28.8 keV @ 105 MeV)

MESA Energy variation

Going down from $105 \rightarrow 75$ MeV Zero order:

- Varying MAMBO energy probably very tedious and detrimental since Imax~pin -Achieve 75 MeV+x by reducing energy gain per turn

(35+5, 70+5 MeV)

- First order: But defelction angles scale liek energies 105/55=1,0909

is not equal 75/40 =1,875 \rightarrow can probably be corrected , since more space available inspreaders

Kryomodules: delivery summer 17

 \rightarrow Tested and in store summer 2018?

Kryoplant: Modifikations & purchase SAC& transfer lines (?)

,in 2018/19

MAMBO: (structures& transmitters) Order not before end 2017, delivery until mid 2019,

MESA: timelines

- ightarrow Tested and in store beginning 2020 ?
- → Magnets: Order summer 2017, delivery end 2018
- → Vacuum, controls, etc...also feasible before 2020 (money?)

BUILDING: so far on time, finalization foreseen October 2020.

Earlier access, depends on LBB and architects.

2019-2020: Intense planning, resource allocation required \rightarrow No realistic installation/commisioning schedule so far.

$$\Delta E_{\rm rms}/E = 2.68 \cdot 10^{-4}$$
 (28.8 keV @ 105 MeV)

MESA: timelines

 $\Delta E_{\rm rms}/E = 2.68 \cdot 10^{-4}$ (28.8 keV @ 105 MeV)

- a non-isochronous working point can improve the energy spread and the stability of a recirculated beam significantly, even when only few turns of recirculation are used
- a proper energy spread and a phase stabilization of the injector beam is important. Short bunchlength after injector seems to be more important than heading for best energy spread
- at MESA a non-isochronous recirculation scheme is planned for the external beam mode but further simulations still have to be done to find the optimum set of parameters
- for ERL mode at MESA further investigations are needed in order to figure out the possibility of such a system

Thank you for your attention!

Supplement slides

In MAMBO rf jitters can have effects on:

- Bunchlength
- Extraction phase
- Energy spread
- Mean energy

Here: calculations for 150 μA by Robert Heine

MAMBO stability

 \rightarrow Investigate how EB and ERL mode are affected

MAMBO : ERL Operation

Injector properties affecting 4-pass isochronous ERL mode:

- → shorter bunches at higher energy spread can improve energy spread at experiment
- → MAMBO is optimized for best energy spread so far

MAMBO: EB operation

Injector properties affecting 6-pass non-isochronous ERL mode:

MESA: non-iso ERL Operation

Phase [deg]

PRISMA

MAMI and MESA at KPH Mainz

- MAMI is operating since >25 years at KPH
- In 2012 funding of • **PRISMA** cluster of excellence has been granted including a new accelerator project:

Accelerator (MESA) to be built in the exisisting facility

In June 2015 DFG granted a research building to JGU "Center for ۲ Fundamental Physics (CFP)" including an extension for MESA halls

MESA Injector Test Setup

MESA Accelerator Layout –optimization:

Other subsystems until 2020– careful optimization of the more "conventional" system

- r.f. system : Semiconductor amplifiers (of strategic importance but expensive!)
- Cryoplant (discussion with vendor for extension completed, order in ~2018)
- Recirculations arcs and experimental beamlines (magnet offers exist, expensive!)
- Cost reduction measures needed & started , e.g. Großgeräteantrag submitted (mainly Rf), in house fabrication of quadrupoles, iron pieces for deflection)

- Construction of the extended MESA hall will delay the construction of the accelerator to at least **2020**
- But many accelerator parts have been ordered or even built already
- We will test the injector up to 2.5 MeV in a test setup in Hall 3 (old part of the building). Construction started **mid 2016** tests beamtimes can be run till civil construction starts
- Cryomodule tests will be performed at HIM in 2017
- Parts of experimental setups, detectors etc. can be tested at MAMI
- 4 PhD students funded by the new Research Training Group GRK 2128 "AccelencE" will contribute to the project from April 2016 on

Summary

- The new layout provides clear advantages:
 - The existing beam dump can be more effectively used for P2 experiment
 - In addition, it allows a new experiment: BDX (search for dark matter particles)
 - One hall (No. 4) for present stays clear, allowing extensions (additional experiments or instrumentation) in future
- Disadvantages of the new layout:
 - No accelerator setup till civil construction of the new building is finished
 - Already existing start-to-end beam dynamics calculations need to be redone
 - Nevertheless the new layout can strongly rely on the old one. Important parts like vertical spreaders and low energy beam transport will stay very close to the old layout.

- The new layout provides clear advantages:
 - The existing beam dump can be more effectively used for P2 experiment
 - In addition, it allows a new experiment: BDX (search for dark matter particles)
 - One hall (No. 4) for present stays clear, allowing extensions (additional experiments or instrumentation) in future
- Disadvantages of the new layout:
 - No accelerator setup till civil construction of the new building is finished
 - Already existing start-to-end beam dynamics calculations need to be redone
 - Nevertheless the new layout can strongly rely on the old one. Important parts like vertical spreaders and low energy beam transport will stay very close to the old layout.

MESA/MEEK Cryogenic system

Simplified P&ID for MESA

39

min