$\begin{array}{c} Jet{-}ISR \ Experiment \ at \ A1 \\ {\rm definitely \ the \ attempt \ to \ make \ an \ almost \ zero \ background \ experiment } \end{array}$

Sören Schlimme

A1 Collaboration Institut für Kernphysik JGU Mainz

1st official collaboration meeting of the MAGIX-collaboration at MESA

Feb. 15-17, 2017, Mainz

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

- reminder ISR-2013
- planned improvementschallenges

2017-02-16 1/28

radius determination limitations

extrapolation model

systematic studies

limited Q²-range

- reduce beam energy
- reduce scattering angle
- different measurement technique

data unprecise/inaccurate

• work, work, work

radius determination limitations

Jet-ISR Experiment at A1

Probe G_E at reduced Q^2 details: Mihas presentation

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

2017-02-16 6/28

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

2017-02-16 7/28

ISR 2013 - experiment

lowest Q^2 settings lost due to huge background

ISR - goals

- Precisely Extract G_E
- compare with elastic ep
 - test description radiative tail
- evaluate G_E very low Q^2
 - precise radius extraction

Redo experiment

- similar measurements / kinematics
- improved setup

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

2017-02-16 8/28

Benefits Jet-Target

- no background
 - Havar foil
 - cryogenic depositions
 - target frame (!?)
- small effects
 - external radiation
 - multiple scattering
 - ionization loss
- no extended target issues

Challenges

- fail-safe beam pos. stability
- luminosity determination / monitoring
- drastically reduced target thickness

 $\frac{70\,\mathrm{mg/cm^3}}{0.1\,\mathrm{mg/cm^3}} \cdot \frac{50\,\mathrm{mm}}{2\,\mathrm{mm}} = 17500$

Benefits Jet-Target

- no background
 - Havar foil
 - cryogenic depositions
 - target frame (!?)
- small effects
 - external radiation
 - multiple scattering
 - ionization loss
- no extended target issues

Challenges

- fail-safe beam pos. stability
- luminosity determination / monitoring
- drastically reduced target thickness

 $\frac{70 \text{ mg/cm}^3}{0.1 \text{ mg/cm}^3} \cdot \frac{50 \text{ mm}}{2 \text{ mm}} = 17500$

Save Our Statistics

 2×5 no brutal analysis cuts no empty cell runs (target + snout) (hopefully) Still 1750 to go... beam intensity?

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

2017-02-16 15/28

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

2017-02-16 16/28

Sören Schlimme (JGU)

2017-02-16 17/28

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

2017-02-16 18/28

Geometric alignment

• Spectrometer A • Spectrometer B Spectrometer C

о.5

1.5

Jet-ISR Experiment at A1

Geometric alignment

Beam + target alignment

- cross section: very angle-sensitive
- reconstructed particle momenta
 ↔ beam height
- \rightarrow beam + target position!

screen target

- 15mm before Jet
- well centered (also height)
- use for beam alignment during experiment

Jet-Target

- nozzle + catcher well centered
 - relative
 - absolute

Sören Schlimme (JGU)

2017-02-16 20/28

Double-check alignment with beam

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

2017-02-16 21/28

Double-check alignment with beam

Can even try to measure jet-beam profile

- 1d / 2d
- not along beam direction
 - in principle with spectrometer, but resolution insufficient

Double-check alignment with beam

Can even try to measure jet-beam profile

- 1d / 2d
- not along beam direction
 - in principle with spectrometer, but resolution insufficient

need control of

- wobbler calibration
 - wire targets
 - move target
 - step beam
- beam position profile
- beam spot size

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

Spectrometer alignment

Spectrometer positioning

- positioning resolution $\approx 0.013^{\circ}$
- sometimes issues with collimator specB → validate correct position
 before Jet-Target setup!

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

Estimated statistical precision + systematics

- Measurements will be performed similar to previous experiment
- Despite limited luminosity, high statistical precision seems achievable
- Expected main background from cosmics (several 10 Hz)
 - suppression with Cherenkov detectors

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

2017-02-16 25/28

systematic checks Calibration runs /

auxiliary measurements

- data without jet-beam (bgr)
- cosmics data
- full Cherenkov-B acceptance? (inefficient corner, irrelevant in 2013 - hard cuts)
- test influence quadrupole $A \rightarrow B$ (specA: $50^\circ \rightarrow 25^\circ$)
- q.e. scattering carbon target

- detector calibration specA (specB)
- scintillator efficiency runs

speenometers			
 collimators (well-defined acceptance) 			
 scintillators (trigger) 	,	Α	B
• VDCa (track reconstruction)	magnets	QSDD	D
• VDCs (track reconstruction)	$\Delta \Omega_{\rm max} [{ m msr}]$	28	5.6
 Cherenkov-detector 	ang. res [mrad]	$<\!3$	<3
(PID, cosmics suppression)	$p_{ m max} [{ m MeV}/c]$	735	870
• well known magnetic properties	$\Delta p/p$	20%	15%
$ ightarrow heta_0, \phi_0, p, y_0$	$\delta p/p$	10-4	10-4

Sören Schlimme (JGU)

snectrometer

. . . .

- ISR technique for FF determination was successfully validated
- result was limited by background
- experiment will be repeated with improved setup
 - Jet-target
 - spectrometer entrance replaced
- Ultimate goal: measure proton charge FF down to $Q^2=10^{-4}\,GeV$ with commensurate precision

Sören Schlimme (JGU)

Jet-ISR Experiment at A1

2017-02-16 28/28