First Beam Analysis and Perspectives of the Target for MAGIX

Silke Grieser

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik MAGIX collaboration meeting 2017, Mainz, 16.02.2017

Perspectives of the MAGIX Target The Gas-Jet Target

- Windowless target & minimal background interaction
- Different target material: H₂, O₂, ³He, Xe, ...
- Pointlike interaction zone
- Target thickness constant in time and also continuously adjustable
- Luminosities: 10^{35} cm⁻²s⁻¹
- Target thickness: $O(10^{19}) \frac{atoms}{cm^2}$

Perspectives of the MAGIX Target Specially Shaped Nozzles

 \bullet Application of specially shaped nozzles \Rightarrow slit nozzle

 Overlap between target beam and accelerator beam small compared to the size of the target beam

- Target beam size as small as possible at same overlap region with accelerator beam ⇒ Improvement of vacuum conditions in scattering chamber
 - \Rightarrow Target thickness: $1 \cdot 10^{19 \frac{atoms}{cm^2}}$ with slit nozzle (outlet): 0.5 mm x 2 mm
 - \Rightarrow Target thickness: $5 \cdot 10^{18} \frac{\text{atoms}}{\text{cm}^2}$ with round nozzle: $\emptyset = 0.5$ mm & outlet: 1 mm

Volume Flow and Density

• Volume flow q_V at normal conditions:

$$q_{V} = A^{*} \frac{p_{0}}{\sqrt{MT_{0}}} \frac{T_{N}}{p_{N}} \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{2(\kappa-1)}} \sqrt{\kappa R}$$

- A*: Critical area of the nozzle
- p_0 and T_0 : Current pressure or temperature at the nozzle
- p_N and T_N : Normal pressure and normal temperature
- R: Universal gas constant
- M: Molecular mass
- κ : Heat capacity ratio
- Target density ρ_T :

$$\rho_T = \frac{\dot{m}}{\mathbf{v} \cdot \mathbf{A}_{beam}}$$

$$\dot{m} = \frac{q_v \cdot M \cdot p_N}{R \cdot T_N}$$

- m: Mass flow
- Abeam: Dimensions of the beam
- v: Beam velocity

Volume Flow and Density

• Round nozzle with \emptyset : 0.5 mm & outlet: 1 mm

The Gas Cooling System

The Gas Cooling System

Coldhead warm stage

The Gas Cooling System

Coldhead cold stage

The Gas Cooling System

- Final temperatures:
 - Gas: 48K
 - Cold stage: 41K
 - Warm stage: 51K

Mach Zehnder Interferometer

- Investigations of
 - Target thickness
 - Shape of the target beam
 - Range of the target beam
 ⇒ Design of catcher to improve vacuum conditions
 - Impacts of stagnation conditions at the nozzle
 - Studies of nozzles with different geometries

Mach Zehnder Interferometer

Experimental setup:

- Nitrogen
- Temperature: 288 K
- Pressure: 20 bar
- Round nozzle with Ø: 0.5 mm & outlet: 2 mm (D. Bonaventura)
- Exposure time: 10 μs

Analysis:

- Phase shift: $\rho_A(x,y) = \frac{\Delta \Phi(x,y)}{2\pi} \frac{\lambda}{k_{GD}}$
- Gladstone Dale constant: k_{GD}

areal density / a.u.

areal density / a.u.

areal density / a.u.

areal density / a.u.

areal density / a.u.

areal density / a.u.

areal density / a.u.

Summary & Outlook

Summary

- Target for MAGIX fulfills all the requirements
- Slit nozzles
 - Improvement of vacuum conditions
- Cooling System
 - Directed, less divergent beam
 - Higher range
 - \Rightarrow Achieve highest thickness

Outlook

- Initial Operation with the nitrogen cooling system
- Determination of absolute density thickness and shape
- Measurements with hydrogen at low temperature
- Investigations of different nozzle designs

Mach Zehnder Interferometer

