Modern Hadron Spectroscopy : Challenges and Opportunities

Adam Szczepaniak, Indiana University/Jefferson Lab

Lecture 1: Hadrons as laboratory for QCD:

- Introduction to QCD
- Bare vs effective effective quarks and gluons
- Phenomenology of Hadrons

Lecture 2: Phenomenology of hadron reactions

- Kinematics and observables
- Space time picture of Parton interactions and Regge phenomena
- Properties of reaction amplitudes

Lecture 3: Complex analysis

Lecture 4: How to extract resonance information from the data

- Partial waves and resonance properties
- Amplitude analysis methods (spin complications)

Why QCD and Hadron Spectroscopy

INDIANA UNIVERSITY

Jefferson Lab

- A single theory describing nuclear phenomena at distance scales O(10¹⁵m) as well as O(10⁴m).
- It builds from objects (quarks and gluons) that do not exist. Gluons are responsible for mass generation and color confinement.
 - ~99% mass comes from interactions!
- Complex ground state (vacuum) and excited (hadrons) states (monopoles, vortices, ...)
- Predicts existence of exotic matter, e.g. matter made from radiation (glueballs, hybrids) and novel plasmas.
- A possible template for physics beyond the Standard Model
- It is challenging !

Stranger Things (of the Nuclear World)

What are the constituents of hadrons, (quarks and gluons)?

small world (10⁻¹⁵m)

of fast $(v \sim c)$ particles

exerting ~1T forces !!!

 $\hbar = c = 1$

Unit energy = 1GeV $[length] = [time] = [energy]^{-1}$ = [momentum]⁻¹

INDIANA UNIVERSITY Jefferson Lab

Particle vs Fields

In relativistic quantum mechanics (QFT) particles are emergent phenomena

(i.e. fields are not physically measurable but their "consequences" are, cf. potential vs electric field density)

$H = H_{h.o} =$ (coupled) harmonic oscillators

"bare" particles : eigenstates of H_{h.o.}

Fourier transform linearize Hamiltonian

$$p(x) \rightarrow p(k) = \int dx e^{ikx} p(x)$$
 $q(x) \rightarrow q(k) = \int dx e^{ikx} q(x)$

Particles associated with creation and annihilation operators

$$q(k) = a(k) + a^{\dagger}(k) \quad |k\rangle = a^{\dagger}(k)|0\rangle \ |k,q\rangle = a^{\dagger}(k)a^{\dagger}(q)|0\rangle, \cdots$$

Renormalization

- The distance scale **a** was the only mass scale, e.g. $E = O(a^{-1})$ and there is now continuum limit for energy. This a reflation of scaling invariance of the continuum Hamiltonian. $x \to \lambda x \quad H \to \frac{H}{\chi}$
- A calculable QCD "scheme" (e.g. lattice, S-D equations, etc) needs a distance scale. (aka anomalous symmetry breaking).
- All physical quantities are determined w.r.t to his scale, (e.g. pion mass in QCD, or electron mass in QED)
- Renormalizable QFT : scale is there, but it is arbitrary, i.e. the theory predicts how observables change with scale.
- Non-renormalizable (effective) QFT : scale if fixed, i.e. the theory is only valid (predictive) at a particular scale.

Example:

In 0+1 dimension (Quantum Mechanics in 1 special dimension) find bound states of the Hamiltonian

 $H = p + \lambda \delta(x) = \sqrt{p^2 + \lambda \delta(x)}$

Particles vs Fields: Hamiltonian vs Lagrangian 9

Bare particles are eigenstates of free Hamiltonian¹⁰

"Bare (free)" particles of QCD: quarks and gluons

e.g. because of asymptotic freedom measured in high energy collisions

- Gluon ~ 8 copies of a photon
- Photons do not cary electric charge : they only interact the matter (e.g.) electrons that do carry charge
- Gluons carry charge, i.e. interact with each other and with quarks.

Discovery of quarks e.g. the J/ψ

A narrow resonance was discovered in the 1974 November revolution of particle physics" in two reactions:

Charmonium spectrum

QED vs QCD

 Bare particles are eigenstates of free Hamiltonian. If interactions are weak (QED) the "bare particle" ~ observed particle = (interacting particles)

"Evidence" for Constituent Quarks:Light Quark Hadrons 14

Spectrum of mesons containing u,d,s quarks from numerical QCD simulations (lattice) resembles spectrum of quark models.

Emergence of constituent quarks

 $H = H_{kin} + V = H_{h,o} + V$

 $V = \int d\mathbf{x} d\mathbf{y} \rho(x) V(|\mathbf{x} - \mathbf{y}|) \rho(\mathbf{y})$

(Color) charge density

Instantaneous potential between (color) charges, e.g. Coulomb + Linear

(Color) charge density

The ground state contains condensate of quarks

$$\mathbf{k} = a_{\mathbf{k}}^{\dagger} | \Omega \rangle \quad \delta m_{\mathbf{k}} = \langle \mathbf{k} | V | \mathbf{k} \rangle$$

$$\delta m_{\mathbf{k}} = \int d\mathbf{x} e^{i\mathbf{k}\mathbf{x}} \left[\int d\mathbf{y} V(|\mathbf{x} - \mathbf{y}|) \langle \Omega | \rho(\mathbf{y}) | \Omega \rangle \right] + \cdots$$

Hartree + Fock

mass generation

Jefferson Lab

QCD vacuum and Constituent Quarks

Where do constituent quarks come from

QCD vacuum and Constituent Gluons

Gluons are responsible for confinement (aka effective potential between color charges) and are confined (aka contribute to the color charge)

Confining Potential and the gluon condensate 18

$$K \to -\frac{g^2}{\nabla^2} = \frac{\alpha}{|\mathbf{x} - \mathbf{y}|} = \begin{cases} \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \end{cases}$$

INDIANA UNIVERSITY

- Coulomb "Potential" between external (i.e. quark charges) depends on the distribution of gluons.
- In presence of a gluon condensate it produces a Confining force been external color charge

Jefferson Lab

How to Probe Gluons

- 1. Gluons in the vacuum:
 - Insert a quark pair and measure energy the instantaneous energy.

O

Ω

QCD vacuum

Hamiltonian in the Coulomb state

$$\frac{1}{r} \to \langle 0 | V_c[A] | 0 \rangle = V_c(r)$$

Coulomb state \ QCD eigenstate

- 2. Gluons in a physical e.g. quarkantiquark state:
 - Insert a quark pair, wait until it polarizes the vacuum and measure energy the state.

Wilson state = QCD eigenstate

 $|Q\bar{Q}\rangle = Q^{\dagger}\bar{Q}^{\dagger}|0\rangle + Q^{\dagger}\bar{Q}^{\dagger}g^{\dagger}|0\rangle + \cdots$

Coulomb state + extra gluons

Quasi-Gluon Properties

Potential energy curves for the excited valence states of Ca₂

Adiabatic potentials map out distribution of exited gluons:

Gluons behave as quasiparticles with J^{PC}=1⁺⁻

Quark Model (without quasi-gluons)

Lattice Charmonium Spectrum

Quark Model with Gluons : Hybrid States

 $J^{PC} = 1^{-+}$ is not a qq state

23

exotic quantum numbers

Meson Spectrum on the Lattice

Hunting for Resonances

Y(4260) as Hybrid Candidate

Ш

INDIANA UNIVERSITY

Jefferson Lab

discovered by BaBar in J/ ψ $\pi^+\pi^-$ (2005) confirmed by CLEO,Belle other modes from BaBar

Theory: Hybrid candidate

The Golden Channel: $\eta\pi$

A possible scenario (Lecture 1 summary)

- QCD vacuum has gluon condensate in the form color monopolies, vortices,...
- The condensate leads to an effective, confining potential between color charges
- Light quarks propagating through this medium acquire effective mass
- Static color charges (i.e. "very heavy" quark) inserted into the vacuum polarize the condensate and change the background gluon distribution
- For large separation between the charges this leads to formation of a chromo electric flux tube (aka dual superconductor)
- For small separation between charges, the effect of vacuum polarization can be described as quasi-particles.
- Once the have quarks are allowed to move the polarized gluon filed (the quasiparticle of the flux tube) can result in a new type of hadrons -> hybrid mesons or baryons.