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Lecture 1: Hadrons as laboratory for QCD:  

• Introduction to QCD  

• Bare vs effective effective quarks and gluons 

• Phenomenology of Hadrons  

 Lecture 2: Phenomenology of hadron reactions  

•  Kinematics and observables  

• Space time picture of Parton interactions and Regge phenomena 

• Properties of reaction amplitudes  

 Lecture 3: Complex analysis  

Lecture 4: How to extract resonance information from the data  

• Partial waves and resonance properties 

• Amplitude analysis methods (spin complications)

Modern Hadron Spectroscopy : Challenges and Opportunities
Adam Szczepaniak, Indiana University/Jefferson Lab
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Why QCD and Hadron Spectroscopy 2

• A single theory describing nuclear phenomena at 
distance scales O(1015m)  as well as O(104m). 

• It builds from objects (quarks and gluons) that do 
not exist. Gluons are responsible for mass 
generation and color confinement.  

• ~99% mass comes from interactions! 

• Complex ground state (vacuum) and excited 
(hadrons) states (monopoles, vortices, …) 

• Predicts existence of  exotic matter, e.g. matter 
made from radiation (glueballs, hybrids) and 
novel plasmas. 

• A possible template for physics beyond the 
Standard Model 

• It is challenging !
F = -k x
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Stranger Things (of the Nuclear World) 3

What are the constituents of hadrons, (quarks 
and gluons) ? 

small world (10-15m)  

of fast (v~c) particles  

exerting ~1T forces !!! 

~ = c = 1

[length] = [time] = [energy]-1 
= [momentum]-1

Unit energy = 1GeV
Unit lengt = 1GeV-1 = 0.197 fm
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Particle vs Fields 4

collective motion  
→ particle

“excitation of the 
aether” → field 

In relativistic quantum mechanics (QFT) 
particles are emergent phenomena

“bare” particles : eigenstates of Hh.o.

H = Hh.o = (coupled) harmonic oscillators 

(i.e. fields are not physically measurable but their “consequences” are, cf. potential vs electric field density) 
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Example: 1+1 
5
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In the continuum 
limit 
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ikx

p(x) q(x) ! q(k) =
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ikx

q(x)Fourier transform linearize  Hamiltonian

q(k) = a(k) + a†(k) |ki = a†(k)|0i |k, qi = a†(k)a†(q)|0i, · · ·

dim[q] = 0dim[p] = 1
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N�N

Particles associated with creation and annihilation 
operators 

The only physical mass parameter is the distance between “beads” a 
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Renormalization 6

x ! �x H ! H

�

• The distance scale a was the only mass scale, e.g.  E = O(a-1) and there is 
now continuum limit for energy. This a reflation of scaling invariance of the 
continuum Hamiltonian.  

• A calculable QCD “scheme” (e.g. lattice, S-D equations, etc) needs a distance 
scale. (aka anomalous symmetry breaking). 

• All physical quantities are determined  w.r.t to his scale, (e.g. pion mass in 
QCD, or electron mass in QED)  

• Renormalizable QFT : scale is there, but it is arbitrary, i.e. the theory predicts 
how observables change with scale.  

• Non-renormalizable (effective) QFT : scale if fixed, i.e. the theory is only valid 
(predictive) at a particular scale.   
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Example: 7

H = p+ ��(x) =
p
p2 + ��(x)

In 0+1 dimension (Quantum Mechanics in 1 special 
dimension) find bound states of the Hamiltonian 
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Particles vs Fields: Hamiltonian vs Lagrangian 9

H(pi, qi)
Legendre transformation

Quantum picture:  
particles, states,  
operators, etc. 

Semiclassical Picture: 
path integral, 

classical solution 
(solitons), etc.

Q
ua

nt
iz

at
io

n 
Q

uantization 

Probabilistic interpretation
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Bare particles are eigenstates of free Hamiltonian10

“Bare (free)” particles of QCD: quarks and gluons 

e.g. because of asymptotic freedom 
measured in high energy collisions 

• Gluon ~ 8 copies of a photon  

• Photons do not cary electric charge : they only interact 
the matter (e.g.) electrons that do carry charge 

• Gluons carry charge, i.e. interact with each other and 
with quarks. 
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Discovery of quarks e.g. the J/ψ 11

A narrow resonance was discovered in the 1974 November 
revolution of particle physics" in two reactions:

Proton + Be => e+   e-  + anything 
at the BNL J. J. Aubert et al., “Experimental 
observation
 of a heavy particle J," Phys. Rev. Lett. 33, 1404 
(1974).

e+e-  annihilation to hadrons 
in the SPEAR storage ring at Stanford
J. E. Augustin et al., “Discovery of a narrow
 resonance in e+e-annihilation," Phys. Rev. Lett. 33, 1406 (1974).

J/ = cc̄
mass = 3096.87 MeV

� = 87 keV

typical hadronic width = O(100 MeV)

103  longer lifetime !
(weak interactions 1012)
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Charmonium spectrum 12

is a bound state of c c

J/ψ

J/ψ



inverse distance between 
quarks

eQCD ~ 10 eQED 

“free” quarks

quarks 
bound  

in hadrons
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QED vs QCD 13

• Bare particles are eigenstates of free Hamiltonian. If interactions are weak 
(QED) the  “bare particle” ~ observed particle = (interacting particles)

HQED  = Hc.h.o. + eV 

|electron> = 

e ~ 0.303

|bare electron>  eV|bare electron>
+ + O(e2) 

• Quarks in hadrons have effective color 
charge e > 3-4. There is no reason why 
quarks should retain their identify in 
presence of strong interactions … 

…but it seems they do 
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“Evidence” for Constituent Quarks:Light Quark Hadrons 14

J.Dudek et al.

Spectrum of mesons containing u,d,s quarks from numerical QCD 
simulations (lattice) resembles spectrum of quark models. 
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Emergence of constituent quarks 15

H = H
kin

+ V = H
h.o

+ V

V =

Z
dxdy⇢(x)V (|x� y|)⇢(y)

(Color) charge density

Instantaneous potential between (color) 
charges, e.g. Coulomb + Linear

(Color) charge density

|ki = a†k|⌦i �mk = hk|V |ki

k

|⌦i Hartree + Fock 

�m
k

=

Z
dxeikx

Z
dyV (|x� y|)h⌦|⇢(y)|⌦i

�
+ · · ·

The ground state contains condensate of quarks  
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QCD vacuum and Constituent Quarks 16

Where do constituent quarks come from  

Current quark levels E 

Fermi-Dirac sea 
BCS vacuum 

Cooper pairs from  
Chromoelectric Coulomb  
attraction near Fermi-Dirac  
surface.  

mconst ~ 0.1-0.3 GeV 

Meson =  
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QCD vacuum and Constituent Gluons 17

Gluons are responsible for confinement (aka effective 
potential between color charges) and are confined (aka 
contribute to the color charge) 

space

time
⟨A⊥A⊥⟩

long range 
interaction

Coulomb gauge
rA

a(x) = 0

short range 
interaction
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Confining Potential and the gluon condensate 18

H = Hkin + V

=|⌦i

K ⇥ � g2

⌅2
=

�

|x� y| =

• Coulomb “Potential”  between external (i.e. 
quark charges) depends on the distribution 
of gluons. 

• In presence of a gluon condensate it 
produces a Confining force been external 
color charge 

long range,  
Confining interaction

+
+ · · ·

+h⌦|

Coulomb string tension 

J.Greensite, et al.

without vortices  

Ω contains condensate of 
monopoles, vortices, …
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How to Probe Gluons 19

2.  Gluons in a physical e.g. quark-
antiquark state:  

• Insert a quark pair, wait until it 
polarizes the vacuum and 
measure energy the state.

Q

Q
_

Coulomb state 

QCD vacuum 

1

r
! h0|Vc[A]|0i = Vc(r)

Expectation value of QCD 
Hamiltonian in the Coulomb state

Coulomb state  +   extra gluons  

1.  Gluons in the vacuum:   

• Insert a quark pair and 
measure energy the 
instantaneous energy.

Coulomb state = QCD eigenstate\

|QQ̄i = Q†Q̄†|0i+Q†Q̄†g†|0i+ · · ·

Wilson state = QCD eigenstate
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Quasi-Gluon Properties 20

Potential energy curves for the excited 
valence states of Ca2 Adiabatic potentials map out distribution of 

exited gluons:  
Gluons behave as quasiparticles with JPC=1+-

Q̄

Q

JPC=1+-

K.Juge, J.Kuti, Morningstar 
G.Bali

glue-lump
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Quark Model (without quasi-gluons) 21

J.Dudek et al.  JLab 

quark model states

π

ρ

NEW states
L

S

S

1

2
S = S  + S1 2

J = L + S

C = (-1)L + S

P = (-1)
L + 1
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Lattice Charmonium Spectrum 22

J.Dudek et al.
J/ψ

ϰ0
ϰ1 ϰ2hcψ’

ηc’

ηc

ψ(4040)

ψ(4415)

ψ(4260)

0-+ 1-+  2-+  1- - 0++  1++ 2++ 0+- 1+- 1+- 1+- 2+- 2+- 3+-

TERRA INCOGNITA
X,Y,Z states
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Quark Model with Gluons : Hybrid States 23

Pqq̄ = (�1)L+1

Cqq̄ = (�1)L+S

JPC glue

JPC QQ

_

1��

JPC = 1-+ is not a qq state 
_

exotic quantum numbers
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Meson Spectrum on the Lattice 24

new multiplets from lattice 

J.Dudek et al.  JLab 

quark model states

π

ρ

large overlap with
 gluonic operators
includes 1-+ exotic 

0-+ 1-+  2-+  1--

 lowest-mass 
 hybrid multiplet

NEW states
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Hunting for Resonances 25

In 1952, E. Fermi and collaborators 
measured the cross section
for                          and found it steeply 
raising.

⇡+p ! ⇡+p
peak in intensity 
(cross section)

1800 phase change  
in the amplitude 

�++

width Γ
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Y(4260) as Hybrid Candidate 26

BaBar (2005) CLEO(2006)

(2007) (2005)

M = 4252± 6+2
�3MeV

� = 105± 18+4
�6MeV

Theory: Hybrid candidate

discovered by BaBar in J/ψ π+π- (2005) confirmed by CLEO,Belle other modes from BaBar
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Light quark exotic candidate 27

M = 1370 ±16−3 0
+5 0  MeV / c2

Γ = 385± 40−105
+65  MeV / c2

π−p→ ηπ−p

π−p→ ηπ0 n No consistent B-W interpretation
possible but a weak ηπ interaction 
exists and can reproduce the exotic wave

π−p→ρ0π−p
M = 1593 ± 8−47

+29  MeV / c2

Γ = 168 ± 20−1 2
+150  MeV / c2

BNL (E852) yes/no
COMPASS yes

E852 result

π
−

p → π
−

2
(1600)p

π
−

2
→ ρ

0
π
−

ρ
0
→ π

−

π
+

π1(1600)nn
_

hybrid
search for  

M = 1597 ±10−1 0
+4 5 MeV / c2

Γ = 340 ± 40−50
+50  MeV / c2π−p→ $ η π−p
Need to be confirmed 
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The Golden Channel: ηπ 28

π
−

p → η
′
π
−

p
E852

COMPASS
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A possible scenario (Lecture 1 summary) 29

• QCD vacuum has gluon condensate in the form color monopolies, vortices,…  

• The condensate leads to an effective, confining potential between color charges  

• Light quarks propagating through this medium acquire effective mass  

• Static color charges (i.e. “very heavy” quark) inserted into the vacuum polarize 
the condensate and change the background gluon distribution  

• For large separation between the charges this leads to formation of a chromo 
electric flux tube (aka dual superconductor)  

• For small separation between charges, the effect of vacuum polarization can be 
described as quasi-particles.  

• Once the have quarks are allowed to move the polarized gluon filed (the quasi-
particle of the flux tube) can result in a new type of hadrons -> hybrid mesons or 
baryons. 


