Spectroscopy of exotic states (Experimental aspects)

Jens Sören Lange Justus-Liebig-Universität Gießen

SFB 1044 Summer School 29.08.–01.09.2017 Boppard, Germany

OUTLINE

- Lecture 1: The Past and Present
 - How it all began (on a parking lot)
 - The X, the Y and the Z
 - What is "beam constraint"?
- Lecture 2: The Future
 - Dalitz formalism: how to "see" quantum numbers
 - (Bottomonium: recoil mass, kinematic reflections → BACKUP)
 - Belle II (ready to take data ?)
 - Panda, an X factory! ("detailed balance")

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

Discovery of Charmonium (J/ψ)

- SLAC (Stanford) Mark I, Richter et al. $e+ e- \rightarrow$ hadrons, e+ e- , $\mu+\mu-$
- BNL (Brookhaven)
 E598, Ting et al.
 $p + A \rightarrow [e+ e-] X$
- new, very narrow state (decay to light mesons blocked by OZI) width ~100 keV

experimental proof for existance of 4th quark

MARK I group reacted quickly \rightarrow it was feasible to modify the accelerator, so that the beam energies could be changed to ≤ 1 MeV every minute.

Discovery of ψ^\prime

- first exited (n=2) state of J/ψ
- only 3 weeks after J/ψ
- beginning of charmonium <u>spectroscopy</u>
- Decay: Ψ´→J/Ψ π+ π-

Heavy Quarkonium

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

Cornell–Potential

 $\left[-\frac{1}{m_q}\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{l(l+1)}{m_q r^2} + V(r)\right)\right]R_{nl}(r) = E_{nl}R_{nl}(r)$

Eichten, Gottfried, et al. PRD 17(1978)3090 Barnes, Godfrey, Swanson, PRD 72(2005)054026

k=0.5 GeV/fm

k=1.5 GeV/fm

Notation

 $n^{2S+1}L$,

IPC

 $-\frac{4}{3}\frac{\alpha_s}{r}$

Quarkonium Excited States

exponential tail

Bottomonium

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

Spatial density distributions

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

The agreement between prediction by the potential model and experimental observation is and was encouraging (level $\sim 10^{-3}$, 2–3 MeV compared to mass of 3-10 GeV) and heavy quark hadron physicists were living happily.

About 30 years passed.

Belle and KEKB, Japan

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

asymm.

 \rightarrow extend decay length

symm.

of B mesons

Accelerator	CESR	KEKB	PEP-II	SuperKEKB
Laboratory	Cornell	KEK	SLAC	KEK
Detector	CLEO III	Belle	BaBar	Belle II
	(achieved)	(achieved)	(achieved)	(planned)
Circumference (km)	0.768	3.0	2.2	3.0
Energy e^-/e^+ (GeV)	5.3/5.3	8.0/3.5	9.0/3.1	7.0/4.0
Lorentz boost $\beta\gamma$	0	0.43	0.56	0.28
Beam current e^-/e^+ (A)	0.5/0.5	$1.6/1.2^\dagger$	3.2/2.1	3.6/2.6
Number of bunches	45	5120	1732	2500
Crossing angle (mrad)	± 2.3	± 11	0	83
Luminosity $(10^{33}/\text{cm}^2\text{s})$	1.55	21.08	12.07	800
$\sigma_x ~(\mu { m m})$	n.a.	103 - 116	120	7.2-8.9
$\sigma_y~(\mu{ m m})$	n.a.	0.94	4	36×10^{-3}
$\sigma_z \ (\mathrm{mm})$	n.a.	6	11	5

The BELLE Detector

A. The $\Upsilon(nS)$ states

Luminosity

Belle Run Summary(v1.84) - Exp 47 Run 529 _____ Start Time: 2005 Dec 7, 22:58:37 took 78 sec to start Stop Time: 2005 Dec 7, 23:14:01 took 924 sec Stop Reason: FATAL from [EFARM1] E1TRK CDC timeout (1 sec rx0 stat=28 len=64/0/11448 ev=193658, Expert shift: S. Lange Non-Expert: K. Kinoshita BCG shift: Ishikawa (4862) Luminosity Run Run Mode: Accelerator: at start at stop Fill-number=16364 Status=Physics Run HER current 1337.4 mA 1321.5 mA 7.9947 GeV Physics Run LER current 1719.2 mA 1732.6 mA 3.4977 GeV Physics Run (CM-energy 10.5759 GeV) HER beamsiz 239.5/ 4.2 242.3/ 3.9 um (x/y) life 229 min LER beamsiz 186.3/ 3.6 187.5/ 3.8 um (x/v) life -243 min HER vacuum 5.0/ 3.0 5.1/ 3.0 x1e-8 Pa (average/upstream) LER vacuum 6.6/ 4.6 6.6/ 4.6 x1e-8 Pa (average/upstream) LER cont. inj. ON (8.6 Hz 7934 times) inj.veto ON (0) Luminosity: ECL EFC KEKB at start 155.80e32 140.07e32 108.39e32 L>1 x 10³⁴ s⁻¹ cm⁻² at stop 156.55e32 139.11e32 109.06e32 peak/fill 157.78e32

 $1 \times 10^{34} \text{ s}^{-1} \text{ cm}^{-2}$

```
1 \text{ barn} = 10^{-24} \text{ cm}^2
```

```
24 hours x 60 min x 60 seconds x 1/10^{10} barn<sup>-1</sup>
= 86.400 x 1/10^{10} barn<sup>-1</sup>
~ 1/10^{15} barn<sup>-1</sup>
= 1 inverse femtobarn per 1 day
```

```
1 nb cross section
x 1.000.000 nb<sup>-1</sup> per 1 day
= 1.000.000 Y(4S) per 1 day !
```

Almost every Y(4S) decays into a B anti-B meson pair.

```
\rightarrow we call it a "B meson factory"
```

Example Events with Charmonium

 $J/\psi \rightarrow e^+e^-$

 $J/\psi \rightarrow \mu^+\mu^-$

$J/\psi \rightarrow e+e-$, $\mu+\mu-$ Invariant Mass

radiative tail (Bremsstrahlung)

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Bopp

A difference between BaBar and Belle: the Cerenkov detectors

Belle: Aerogel Cerenkov Detector

Particle Indentification with Aerogel ,,threshold mode" (Belle)

BaBar DIRC (Detection of internally reflected Cerenkov light)

Synthetic Fused Silica Bars glued end-to-end

Belle Silicon Vertex Detector

FIG. 28. Belle SVD 1.4 (left) and SVD 2.0 (right).

about 10^5 readout channels vertex resolution in beam direction $\Delta z \sim 50 \ \mu m$

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

Particle Detection with Silicon Vertex Detectors

Schematic of a single-sided silicon-strip detector

G.J.Barker, b Quark Physics at LEP

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

Reconstruction of higher charmonium states by invariant mass

Why we often use <u>double Gaussian</u> to fit a signal:

a.) for real data

any effect, which is not in MC, is parametrized as an additional Gaussian

b.) if a peak is constructed from two (or more) daughter particles

each daughter particle contributes as a Gaussian (in particular, when combining a neutral and a charged particle)

Example: $\phi \rightarrow K + K -$

Single Gaussian sigma 3.12 MeV

double Gaussian sigma 2.00 MeV

input value in generator: width 4.26 MeV

Note: narrow and wide Gaussian are forced to same mean.

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017
Breit Wigner Shape

in particular for particles with a natural width comparable to detector resolution

$$p(m) = \frac{1}{(m^2 - m_0^2)^2 + m_0^2 \Gamma^2(m)}$$
width may change with m !!!
from resonance theory ("T matrix"):

the pole of a resonance is a complex number: a real part (m) and an imaginary part (Γ)

Voigtian shape Breit-Wigner and Gauss, folded

- Width of BW fixed to 4.26 MeV (input width in EvtGen)
- Result: Gaussian adds 0.9 MeV (= resolution)

FIG. 109. Difference of the line shape of a Breit-Wigner probability distribution and a Gaussian probability distribution R. K. Bock, W. Krischer, The Data Analysis BriefBook

Beam Constrained Mass m_{BC} or energy substituted mass m_{ES}

$$m_{bc} = \sqrt{\frac{(E_{beam}^{cms})^2 - (p_B^{cms})^2}{4}}$$

$$= \sqrt{\frac{E_{BC}^2}{4} - \left(\left[\sum_i p_{ix}\right]^2 + \left[\sum_i p_{iy}\right]^2 + \left[\sum_i p_{iz}\right]^2\right)}$$

$$\mathsf{B} \to \mathsf{K} \left[\begin{array}{c} \mathsf{J} / \hspace{0.1cm} \psi \hspace{0.1cm} \pi_{_{1}} \hspace{0.1cm} \pi_{_{2}} \end{array} \right]$$

$$px_Bc = jpsi_vector.x() + pcms[kaon].x() + pcms[pion1].x() + pcms[pion2].x(); py_B = jpsi_vector.y() + pcms[kaon].y() + pcms[pion1].y() + pcms[pion2].y(); pz_B = jpsi_vector.z() + pcms[kaon].z() + pcms[pion1].z() + pcms[pion2].z();$$

esum_B = jpsi_vector.e() + pcms[kaon].e() + pcms[pion1].e() + pcms[pion2].e();

deltaE = ECM/2 - esum_B; mass_B = sqrt(esum_B*esum_B - (px_B*px_B + py_B*py_B + pz_B*pz_B)); mass_BC = sqrt(ECM*ECM/4. - (px_B*px_B + py_B*py_B + pz_B*pz_B)); ECM comes from accelerator measurement.

B meson invariant mass

Beam constrained mass m_{BC} or energy substituted mass m_{ES}

Statistical Significance

Fit S+BG $\chi^2=42.08$ Significance = $\sqrt{(-42.08 + 73.08)} = 5.6$ "sigma" if "likelihood fit", then $\chi^2 \rightarrow 2\ln(\text{likelihood})$ Upper limit (<3 σ), evidence (>3 σ), observation (>5 σ)

χ^2 fit vs. log likelihood fit $S = \sqrt{\chi^2(B) - \chi^2(S+B)}$ $P_{\lambda}(k) = \frac{\lambda^k}{k!} e^{-\lambda}$,

If number of events is small \rightarrow Poisson statistics $\rightarrow \exp()$ Term $\rightarrow \log$ likelihood is better than χ^2 (in other words, removing the shape of exp() and make it flat, when searching for the global minimum)

 $\begin{array}{l} \chi^2 = -2 \ \text{ln} \ L + \ \text{constant} \\ (\text{don't forget the minus sign!} \\ \text{minimum} \ \chi^2, \ \text{but maximum log likelihood}) \end{array}$

$$S = \sqrt{(2 (-\ln L(B) - -\ln L(S+B)))}$$

HOWTO scale the significance

- for a known resonance (control channel) mass and width are known from PDG only yield is floating \rightarrow ndof=1
- for a new resonance (maybe exotic) nothing is known mass, width, and yield are floating \rightarrow ndof=3

rule: we must scale the significance

```
chi2=52.58 for a fit with ndof=3
root [4] TMath::Prob(42.08, 3)
(Double_t)3.85831510574144829e-09
search for new chi2 with same p-value, but ndof=1
root [68] TMath::Prob(34.694, 1) // corrected chi2
(Double_t)3.85818878297546610e-09
```

X(3872) A molecular state?

Product branching fraction small $B(\text{B decay}) \times B(\text{X decay}) \simeq 10^{-5}$

X(3872)

X(3872)

This is B meson decays

 $\sum_{i=1}^{3000} \frac{inclusive}{2500} CDF-II \\ \psi' \\ X(3872) \\ 1500 \\ 1000 \\ 500 \\ 500 \\ 0 \\ 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 \\ m(J/\psi\pi+\pi-) / GeV$

This is not simply invariant mass, but fitted m_{BC} yield (for a given mass bin) many fits!

Trick: subtract the J/ ψ mass (so the experimental resolution of the J/ ψ is "taken out")

This is "inclusive" production (not B decays)

This is invariant mass.

 J/ψ mass is not subtracted.

X(3872 \rightarrow J/ $\psi\pi\pi$ event - can you "see" the ψ shape ?

What do we know about the X(3872)?

- Observed by 7 experiments
- Observed in 5 decay channels
- very near to DD* threshold E_B=0.01±0.18 MeV but DD* decays <u>dominant</u> (factor ~10)
- $\Gamma \leq 1.2 \text{ MeV} \rightarrow \text{very narrow}$ (Belle, by 3-dim overconstrained fit)
- J^{PC}=1⁺⁺
 Cornell-potential: χ_{c1}'

Barnes et al., Phys. Rev. D72(2005)054026

- \rightarrow predicted mass $\geq \! 50$ MeV higher
- \rightarrow predicted width factor $\geq\!100$ larger
- isospin violating decays

Is the X(3872) exotic ?

TETRAQUARK

 $[qQ]_8[\overline{qQ}]_8$

Diquarks are colored

Maiani, Riquer, Piccinini, Polosa, Burns; Ebert, Faustov, Galkin; Chiu, Hsieh; Ali, Hambrock, Wang

THRESHOLD CUSP

Bugg; Swanson

MOLECULE Intriguing Analogon 1.8 GeV 2 GeV

Tornqvist; Swanson; Braaten, Kusonoki, Wong; Voloshin; Close, Page Guo, Hanhart, Meissner

Subresonant structure of X(3872) $\rightarrow J/\psi[\pi^+\pi^-]$

almost no non-resonant phasespace component ! dominated by ρ^0 (~100%) ! <u>ISOSPIN VIOLATING</u> 2 particle decay (back-to-back), not a 3-particle decay !

Isospin violating charmonium transistions

Only 2 decays for charmonium measured in PDG

$J/\psi(1S)$ anything	(61.0 \pm 0.6) %			
$J/\psi(1S)$ neutrals	(25.11 ± 0.33) %			
$J/\psi(1S)\pi^+\pi^-$	(34.46 \pm 0.30) %			
$J/\psi(1S)\pi^0\pi^0$	(18.14 ± 0.31) %			
$J/\psi(1S)\eta$	(3.36 ± 0.05)%			
$J/\psi(1S)\pi^0$	(1.268 ± 0.032) $ imes 10^{-3}$			
	Hadronic decays			
$\pi^0 h_c(1P)$	(8.6 ± 1.3) $ imes 10^{-4}$			
	$J/\psi(1S)$ anything $J/\psi(1S)$ neutrals $J/\psi(1S)\pi^+\pi^-$ $J/\psi(1S)\pi^0\pi^0$ $J/\psi(1S)\eta$ $J/\psi(1S)\pi^0$ $\pi^0 h_c(1P)$			

Decays into $J/\psi(1S)$ and anything

but branching fraction of $\mathcal{B}(X(3872) \rightarrow J/\psi\rho)$ is order of ~5–10% factor ~10² too large

Is there isospin <u>inside</u> the X(3872) ?

No evidence. Significant ρ/ω interference can explain lineshape. (proposed by Terasaki, Prog. Theor. Phys. 122(2010)1285)

What important knowledge is missing? \rightarrow Width of X(3872)

```
upper limit on width (Belle I), \Gamma < 1.2 MeV
```

```
for pure \chi_{c1} charmonium state,
prediction \Gamma = 40 keV
G. Y. Chen, J. P. Ma, arXiv:0802.2982[hep-ph], Phys. Rev. D77(2008]097501.
```

if molecule

- must be larger than width of D*
 - Γ > 82.3 \pm 1.2 \pm 1.4 keV
 - E. Braaten, arXiv:0711.1854 [hep-ph], Phys. Rev. D77(2008)034019.
- long-range molecular components in the wavefunction?
- \rightarrow measure the <u>width</u> of the X(3872) in the sub-MeV regime

X(3872) Width Measurement at Belle I

3-dim fit →kinematical over-constraint provides access to observables smaller than detector resolution

Belle, Phys. Rev. D84(2011)052004

Reference Analysis: $B \rightarrow K\psi'$, $\psi' \rightarrow J/\psi \pi^+\pi^-$

factor ~10 more statistics than $X(3872) \rightarrow$ use as reference signal

- \rightarrow fix resolution parameters
- \rightarrow fix absolute mass scale (MC/data shift +0.92±0.06 MeV)

Measurement of width of X(3872)

- Correlation function from MC
 Γ (output) = f(Γ (input))
- 3-dim fits validated with ψ width $\Gamma_{\psi'}=0.52\pm0.11$ MeV (PDG 0.304±0.009 MeV) \rightarrow bias 0.23±0.11 MeV
- procedure for upper limit: width in 3-dim fit fixed
 n_{signal} and n_{BG} floating
 → calculate likelihood
- $\Gamma_{X(3872)} < 0.95 \text{ MeV} + \text{bias}$ 1.2 MeV
- implication: width of X(3872) can be measured at Belle II with syst, error ±110 keV (PANDA, expected fit error ±15–20 keV)

X(3872) in B decays

Exercise:

B → K X(3872) $0- \rightarrow 0- 1+$ parity (-1) → parity (-1) x (+1) x (-1)^L

Exercise:

B → K X(3872)

$$0- \rightarrow 0- 1+$$

parity (-1) → parity (-1) x (+1) x (-1)^L

We need L=1 to create J=1, but this violates parity. The X(3872) is created in a parity violating weak decay.

Y(4260) a gluonic hybrid state?

Note: recent notation by PDG as X(4260)

Y(4260)

- initial state radiation events $e^+e^- \rightarrow \gamma J/\psi \pi + \pi -$ (undetected γ parallel to beam axis)
- mass >4 GeV far above D(*)D(*) thresholds decay to J/ $\psi\pi$ + π should be suppressed
- width < 100 MeV quite narrow for such a high state
- quantum numbers must be (based upon production mechanism)

°C—1--

Y(4260) Parameters

	BaBar 1	CLEO-c 2	Belle 3	Belle 4	BaBar 5	BaBar 6
\mathcal{L}	$211 { m ~fb}^{-1}$	$13.3 \ {\rm fb}^{-1}$	$553 {\rm ~fb^{-1}}$	$548 \ {\rm fb}^{-1}$	$454 {\rm ~fb}^{-1}$	$454 {\rm ~fb}^{-1}$
N	125 ± 23	$14.1^{+5.2}_{-4.2}$	165 ± 24	$324{\pm}21$	344 ± 39	_
Significance	$\simeq 8\sigma$	$\simeq 4.9\sigma$	$\geq 7\sigma$	$\geq 15\sigma$	_	_
m / MeV	$4259 \pm 8^{+2}_{-6}$	$4283^{+17}_{-16}\pm4$	$4295 \pm 10^{+10}_{-3}$	$4247 \pm 12^{+17}_{-32}$	$4252\pm6^{+2}_{-3}$	$4244 \pm 5 \pm 4$
Γ / MeV	$88 \pm 23^{+6}_{-4}$	70_{-25}^{+40}	$133 \pm 26^{+13}_{-6}$	$108 \pm 19 \pm 10$	$105 \pm 18^{+4}_{-6}$	$114^{+16}_{-15} \pm 7$

[1] BaBar Collaboration, arXiv:hep-ex/0506081, Phys. Rev. Lett. 95(2005)142001.

[2] CLEO-c Collaboration, arXiv:hep-ex/0611021, Phys. Rev. D74(2006)091104.

[3] Belle Collaboration, arXiv:hep-ex/0612006.

[4] Belle Collaboration, arXiv:0707.2541[hep-ex], Phys. Rev. Lett. 99(2007)182004.

[5] BaBar Collaboration, arXiv:0808.1543[hep-ex].

[6] BaBar Collaboration, arXiv:1204.2158[hep-ex], Phys. Rev. D86(2012)051162.

BESIII Experiment at BEPC II (symmetric !)

Superconducting solenoid B=1 T

no silicon vertex detector, because only D mesons (no separation of B mesons and D mesons required)

no Cerenkov detector (time-of-flight sufficient for K/ π separation, low momentum)

$e^+e^- \rightarrow Y(4260) \rightarrow J/\psi \pi^+ \pi^-$ at BESIII

Is the Y(4260) exotic ?

TETRAQUARK

higher excitation ?

Maiani, Riquer, Piccinini, Polosa, Burns

MOLECULE

heavier mesons $(DD_1(2460))$?

[Swanson, Rosner, Close Guo, Hanhart, Meissner

HADRO-CHARMONIUM $[J/\psi f_0(980)]$

Zhu; Kou, Pene; Close, Page; Lattice QCD, Bernard et al.; Mei, Luo

$e^+e^- \rightarrow \gamma_{ISR} J/\psi (\psi') \pi^+\pi^-$: Y(4008,4260,4350,4660)

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

What is the tail around 4.7 GeV?

- Threshold m(D)+m(D**) = 4326 MeV Lineshape distorted? No.
- Non-corrected radiative effects? No. Radiative lower mass tail in $J/\psi \rightarrow e_{+} e_{-}$ might generate higher mass tail in m(J/ ψ -with-wrong-mass $\pi^{+}\pi^{-}$).
- Fit funtion: Breit Wigner x Phasespace x Efficiency Efficiency $a(m-m_0)+b$ with $a=7.4\pm1.3$ GeV-1, $b=9.31\pm0.07$ (Belle) changes factor ~2 over peak

Overpopulation of 1^{--} States

All same quantum number

but apparently

- no mixing with other ψ states
- no mixing among them Y(4260) seems not decay to $\psi^{\prime} \pi^{+} \pi^{-}$ Y(4350) seems not decay to J/ $\psi \pi^{+} \pi^{-}$

No more $[J/\psi \pi^+ \pi^-]$ state up to 7 GeV

Belle

Note: radiative transitions between the states forbidden by parity

Y(4260): Comparison Belle and BaBar

- BaBar collisions head-on, dipole magnet close to IR
- Belle: ±11 mrad
- slightly higher background at BaBar (also seen as MRad SVD radiation dose)
- backward acceptance for θ~180° limited

What is the Y(4260)?

A hybrid ? $[QQ]_8 g$

Does the Y(4260) decay to e+e-?

- very small coupling to e+ e-(although JP=1--) BR(J/ψ π⁺ π⁻) × Γ(e⁺ e⁻) = (7.5±0.9±0.8) eV BaBar, arXiv:0808.1543
- This is a partial width of the order "eV" of a state which is ~100 MeV total width ! → factor 10⁸ suppressed

What is blocking these decays? (maybe the gluonic string ?)

Z(4430)+

 $\begin{array}{c} \mathsf{B}^{\mathsf{o}} \rightarrow \mathsf{K}^{\!\!+} \psi^{\!\!+} \pi^{\!\!-} \\ \psi^{\!\!\!+} \rightarrow \mathsf{J}/\psi \ \pi^{\!\!+} \pi^{\!\!-} \end{array}$

K*(892) K*(1430)

A charged state can never be a charmonium state.

Z(4430)+

Can you see something maybe wrong?

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

Long discussion between Belle and BaBar (2007–2014) Is the Z+(4430) a kinematical effect ?

- $\cos\theta_K$, the normalized dot-product between the $K\pi$ three-momentum vector in the parent-*B* rest frame and the kaon three-momentum vector after a Lorentz transformation from the *B* meson rest frame to the $K\pi$ rest frame
- $\cos\theta_{\psi}$, the normalized dot-product of the $\psi'\pi^{\mp}$ three-momentum vector in the parent *B* meson rest frame and the ψ' three-momentum vector in the $\psi'\pi^{\mp}$ rest frame.

 $\cos\theta_K$ is correlated with $m(K^{\pm}\pi^{\mp})$, $\cos\theta_{\psi}$ is correlated with $m(\psi\pi^{\mp})$, $\cos\theta_K$ is correlated with $\cos\theta_{\psi}$

TRUE !

MC with angular correlations can describe data well. No Z⁺ states in red line (MC) required ! BaBar, arXiv:1111.5919, Phys.Rev. D85(2012)052003