Spectroscopy of exotic states (Experimental aspects)

Jens Sören Lange
Justus-Liebig-Universität Gießen

SFB 1044 Summer School
29.08.-01.09.2017

Boppard, Germany

OUTLINE

- Lecture 1: The Past and Present
- How it all began (on a parking lot)
- The X, the Y and the Z
- What is „beam constraint"?
- Lecture 2: The Future
- Dalitz formalism: how to „see" quantum numbers
- (Bottomonium: recoil mass, kinematic reflections \rightarrow BACKUP)
- Belle II (ready to take data ?)
- Panda, an X factory! (,,detailed balance")

Discovery of Charmonium (J/ Ψ)

- SLAC (Stanford)

Mark I, Richter et al.
$\mathrm{e}+\mathrm{e}-\rightarrow$ hadrons, $\mathrm{e}+\mathrm{e}-, \mu+\mu-$

- BNL (Brookhaven) E598, Ting et al.
$p+A \rightarrow[e+e-] X$
- new, very narrow state (decay to light mesons blocked by OZI) width $\sim 100 \mathrm{keV}$
 (dith 100 kV)

- experimental proof for existance of $4^{\text {th }}$ quark

MARK I group reacted quickly
\rightarrow it was feasible to modify the accelerator, so that the beam energies could be changed to $\leq 1 \mathrm{MeV}$ every minute.

Discovery of ψ^{\prime}

- first exited ($\mathrm{n}=2$) state of J / ψ
" only 3 weeks after J / ψ
" beginning of charmonium spectroscopy
- Decay:
$\Psi^{\prime} \rightarrow J / \Psi \pi+\pi-$

Heavy Quarkonium

Charmonium vs. Positronium

Decays to light quarks suppressed \rightarrow narrow widths

Charmonium

Positronium

Cornell-Potential

- Coulomb-Potential
+ Confinement-Term
$k=0.5 \mathrm{GeV} / \mathrm{fm}$
$V(r)=-\frac{4}{3} \frac{\alpha_{s}}{r}+k r$
spin-spin $+\frac{32 \pi \alpha_{s}}{9 m_{c}^{2}} \delta_{r} \vec{S}_{c} \vec{S}_{\bar{c}}$
spin-orbit $\quad+\frac{1}{m_{c}^{2}}\left(\frac{2 \alpha_{s}}{r^{3}}-\frac{k}{2 r}\right) \vec{L} \vec{S}$
tensor $+\frac{1}{m_{c}^{2}} \frac{4 \alpha_{s}}{r^{3}}\left(\frac{3 \vec{S}_{c} \vec{r} \cdot \vec{S}_{c} \vec{r}}{r^{2}}-\vec{S}_{c} \vec{S}_{\bar{c}}\right)$
- solve Schrödinger equation (quark mass heavy \rightarrow non-relativistic)

$$
\Psi(r, \theta, \phi)=R_{n l}(r) Y_{l m}(\theta, \phi)
$$

$$
\left[-\frac{1}{m_{q}}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{l(l+1)}{m_{q} r^{2}}+V(r)\right)\right] R_{n l}(r)=E_{n l} R_{n l}(r) \quad \mathrm{JPC}
$$

Quarkonium Excited States

Charmonium

Radial Wavefunctions

The agreement between prediction by the potential model and experimental observation is and was encouraging (level $\sim 10^{-3}, 2-3 \mathrm{MeV}$ compared to mass of $3-10 \mathrm{GeV}$) and heavy quark hadron physicists were living happily.

About 30 years passed.

Belle and KEKB, Japan

\rightarrow extend decay length symm. of B mesons

Accelerator Laboratory	CESR Cornell	KEKB KEK	$\begin{aligned} & \text { PEP-II } \\ & \text { SLAC } \end{aligned}$	SuperKEKB KEK
Detector	CLEO III	Belle	BaBar	Belle II
	(achieved)	(achieved)	(achieved)	(planned)
Circumference (km)	0.768	3.0	2.2	3.0
Energy $e^{-} / e^{+}(\mathrm{GeV})$	5.3/5.3	8.0/3.5	9.0/3.1	7.0/4.0
Lorentz boost $\beta \gamma$	0	0.43	0.56	0.28
Beam current e^{-} / e^{+}(A)	0.5/0.5	1.6/1.2 ${ }^{\dagger}$	3.2/2.1	3.6/2.6
Number of bunches	45	5120	1732	2500
Crossing angle (mrad)	± 2.3	± 11	0	83
Luminosity ($10^{33} / \mathrm{cm}^{2} \mathrm{~s}$)	1.55	21.08	12.07	800
$\sigma_{x}(\mu \mathrm{~m})$	n.a.	103-116	120	7.2-8.9
$\sigma_{y}(\mu \mathrm{~m})$	n.a.	0.94	4	36×10^{-3}
$\sigma_{z}(\mathrm{~mm})$	n.a.	6	11	5

The BELLE Detector

A. The $\Upsilon(n S)$ states

Luminosity

```
Belle Run Summary(v1.84) - Exp 47 Run 529
Start Time: 2005 Dec 7, 22:58:37 took 78 sec to start
Stop Time: 2005 Dec 7, 23:14:01 took 924 sec
Stop Reason: FATAL from [EFARM1] E1TRK CDC timeout (1 sec rx0 stat=28 len=64/0/11448 ev=193658,
\begin{tabular}{ll} 
Expert shift: & S. Lange \\
Non-Expert: & K. Kinoshita \\
BCG shift: & Ishikawa (4862) \\
& \\
Run Mode: & Luminosity Run
\end{tabular}
```


Luminosity:
at start
at stop peak/fill

```
ECL
155.80 e 32
156.55 e 32
157.78 e 32
EFC KEKB
140.07e32 108.39e32
139.11e32 109.06e32
L>1 x 1034 s-1 cm
```

$1 \times 10^{34} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$

1 barn $=10^{-24} \mathrm{~cm}^{2}$

24 hours $\times 60 \mathrm{~min} \times 60$ seconds $\times 1 / 10^{10}$ barn $^{-1}$
$=86.400 \times 1 / 10^{10}$ barn $^{-1}$
$\sim 1 / 10^{15}$ barn $^{-1}$
$=1$ inverse femtobarn per 1 day

1 nb cross section
$\times 1.000 .000 \mathrm{nb}^{-1}$ per 1 day
$=1.000 .000 \mathrm{Y}(4 \mathrm{~S})$ per 1 day !

Almost every $\mathrm{Y}(4 \mathrm{~S})$ decays into a B anti- B meson pair.
\rightarrow we call it a „B meson factory"

Example Events with Charmonium

$$
J / \psi \rightarrow e+e-
$$

$$
\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}
$$

$J / \psi \rightarrow \mathrm{e}+\mathrm{e}-, \mu+\mu-$ Invariant Mass

$\mathrm{K}_{\text {long }}$ Detection, also with the muon detector

A difference between BaBar and Belle: the Cerenkov detectors

Belle: Aerogel Cerenkov Detector

Particle Indentification with Aerogel ",threshold mode" (Belle)

pulse height / number of photoelectrons

BaBar DIRC (Detection of internally reflected Cerenkov light)

$4 \times 1.225 \mathrm{~m}$
Synthetic Fused Silica
Bars glued end-to-end

Belle Silicon Vertex Detector

FIG. 28. Belle SVD 1.4 (left) and SVD 2.0 (right).
about 10^{5} readout channels vertex resolution in beam direction $\Delta z \sim 50 \mu \mathrm{~m}$

Particle Detection with Silicon Vertex Detectors

single sided

Schematic of a single-sided silicon-strip detector
G.J.Barker, b Quark Physics at LEP

Reconstruction of higher charmonium states by invariant mass

$$
m=\sqrt{\left(\sum_{i} E_{i}^{2}\right)-\left(\sum_{i}{\vec{p}_{i}^{2}}^{2}\right)}
$$

often
 DOUBLE GAUSSIAN

Why we often use double Gaussian to fit a signal:
a.) for real data
any effect, which is not in MC,
is parametrized as an additional Gaussian
b.) if a peak is constructed from two (or more) daughter particles
each daughter particle contributes as a Gaussian
(in particular, when combining a neutral and a charged particle)

Example: $\phi \rightarrow \mathrm{K}+\mathrm{K}-$

Single Gaussian
sigma 3.12 MeV

double Gaussian sigma 2.00 MeV

input value in generator: width 4.26 MeV

Note: narrow and wide Gaussian are forced to same mean.

Breit Wigner Shape

in particular for particles with a natural width comparable to detector resolution

$$
p(m)=\frac{1}{\left(m^{2}-m_{0}^{2}\right)^{2}+m_{0}^{2} \Gamma^{2}(m)}
$$

width may change
from resonance theory („T matrix"):
with m!!! the pole of a resonance is a complex number:
a real part (m) and an imaginary part (Γ)

Voigtian shape Breit-Wigner and Gauss, folded

- Width of BW fixed to 4.26 MeV (input width in EvtGen)
- Result: Gaussian adds 0.9 MeV (= resolution)

Attention!

FIG. 109. Difference of the line shape of a Breit-Wigner probability distribution and a Gaussian probability distribution R. K. Bock, W. Krischer, The Data Analysis BriefBook

Beam Constrained Mass m $m_{B C}$

or
energy substituted mass m_{ES}

$$
\begin{gathered}
m_{b c}=\sqrt{\frac{\left(E_{b e a m}^{c m s}\right)^{2}}{4}-\left(p_{B}^{c m s}\right)^{2}} \\
=\sqrt{\frac{E_{B C}^{2}}{4}-\left(\left[\sum_{i} p_{i x}\right]^{2}+\left[\sum_{i} p_{i y}\right]^{2}+\left[\sum_{i} p_{i z}\right]^{2}\right)}
\end{gathered}
$$

$$
\mathrm{B} \rightarrow \mathrm{~K}\left[\mathrm{~J} / \psi \pi_{1} \pi_{2}\right]
$$

$$
\begin{aligned}
& \mathrm{px} _\mathrm{Bc}=\text { jpsi_vector. } \mathrm{x}()+\mathrm{pcms}[\text { kaon }] . \mathrm{x}()+\mathrm{pcms}[\text { pion1]. } \times()+\text { pcms[pion2].x(); } \\
& \text { py_B }=\text { jpsi_vector. } \mathrm{y}()+\text { pcms }[\text { kaon }] \cdot \mathrm{y}()+\mathrm{pcms}[\text { pion1] } \mathrm{y}()+\text { pcms }[\text { pion2 } 2 \cdot \mathrm{y}() \text {; } \\
& \mathrm{pz} _\mathrm{B}=\text { jpsi_vector. } \mathrm{z}()+\text { pcms }[\text { kaon }] . \mathrm{z}()+\mathrm{pcms}[\text { pion1].z(})+\text { pcms[pion2].z(); } \\
& \text { esum_B }=\text { jpsi_vector.e() }+ \text { pcms[kaon].e() }+ \text { pcms[pion1].e() }+ \text { pcms[pion2].e(); } \\
& \text { deltaE }=\mathrm{ECM} / 2 \text { - esum_B; } \\
& \text { mass_B = sqrt(esum_B*esum_B - (px_B*px_B + py_B*py_B + pz_B*pz_B)); } \\
& \text { mass_BC }=\operatorname{sqrt}\left(E C M * E C M / 4 .-\left(p x _B^{*} p x _B+p y _B^{*} p y _B+p z _B^{*} p z _B\right)\right. \text {); }
\end{aligned}
$$

ECM comes from accelerator measurement.

B meson
invariant mass

Beam constrained mass m_{BC}
or
energy substituted mass
mes

Statistical Significance

Fit $S+B G$
$\chi^{2}=42.08$
Significance $=\sqrt{ }(-42.08+73.08)=5.6$, sigma" if „likelihood fit", then $\chi^{2} \rightarrow 2 \ln$ (likelihood)
Upper limit $(<3 \sigma)$, evidence $(>3 \sigma)$, observation $(>5 \sigma)$

χ^{2} fit vs. log likelihood fit

$\mathrm{S}=\sqrt{ }\left(\chi^{2}(\mathrm{~B})-\chi^{2}(\mathrm{~S}+\mathrm{B})\right) \quad P_{\lambda}(k)=\frac{\lambda^{k}}{k!} \mathrm{e}^{-\lambda}$,
If number of events is small \rightarrow Poisson statistics $\rightarrow \exp ()$ Term $\rightarrow \log$ likelihood is better than χ^{2} (in other words, removing the shape of $\exp ()$ and make it flat, when searching for the global minimum)
$\chi^{2}=-2 \ln L+$ constant
(don't forget the minus sign!
minimum χ^{2}, but maximum log likelihood)

$$
S=\sqrt{ }(2(-\ln L(B)--\ln L(S+B)))
$$

HOWTO scale the significance

- for a known resonance (control channel) mass and width are known from PDG only yield is floating \rightarrow ndof $=1$
- for a new resonance (maybe exotic) nothing is known mass, width, and yield are floating \rightarrow ndof $=3$
rule: we must scale the significance
chi2 $=52.58$ for a fit with ndof $=3$
root [4] TMath::Prob(42.08,3)
(Double_t) $3.85831510574144829 e-09$
search for new chi2 with same p-value, but ndof $=1$
root [68] TMath::Prob(34.694,1) // corrected chi2 (Double_t) $3.85818878297546610 \mathrm{e}-09$

X(3872)

A molecular state?

$$
B^{ \pm} \rightarrow K^{ \pm} \underbrace{J / \psi \pi^{+} \pi^{-}}_{\text {resonant state? }}
$$

Product branching fraction small
$B(B$ decay $) \times B(X$ decay $) \simeq 10^{-5}$

X(3872)

X(3872)

This is B meson decays
This is not simply invariant mass, but fitted $m_{B C}$ yield (for a given mass bin) many fits!

Trick: subtract the J / ψ mass (so the experimental resolution of the J / ψ is „taken out")

This is „inclusive" production (not B decays)
This is invariant mass.
J / ψ mass is not subtracted.

$X(3872 \rightarrow J / \psi \pi \pi$ event - can you „see" the ψ shape ?

What do we know about the $\mathrm{X}(3872)$?

- Observed by 7 experiments
- Observed in 5 decay channels
- very near to D^{*} threshold $\mathrm{E}_{\mathrm{B}}=0.01 \pm 0.18 \mathrm{MeV}$
but $\mathrm{D} \overline{\mathrm{D}}^{*}$ decays dominant (factor ~ 10)
- $\Gamma \leq 1.2 \mathrm{MeV} \rightarrow$ very narrow (Belle, by 3-dim overconstrained fit)
- JPC=1++

Cornell-potential: $\chi_{\mathrm{c} 1}{ }^{\prime}$

Barnes et al., Phys. Rev. D72(2005)054026
\rightarrow predicted mass $\geq 50 \mathrm{MeV}$ higher
\rightarrow predicted width factor ≥ 100 larger

- isospin violating decays

Is the $X(3872)$ exotic ?

TETRAQUARK

$$
[q Q]_{8}[\overline{q Q}]_{8}
$$

Diquarks
are colored

Maiani, Riquer, Piccinini, Polosa, Burns;
Ebert, Faustov, Galkin; Chiu, Hsieh;
Ali, Hambrock, Wang

THRESHOLD CUSP

MOLECULE

Intriguing Analogon

Tornqvist; Swanson; Braaten, Kusonoki, Wong; Voloshin; Close, Page Guo, Hanhart, Meissner

Bugg; Swanson

Subresonant structure of $X(3872) \rightarrow J / \psi\left[\pi^{+} \pi^{-}\right]$

almost no non-resonant phasespace component ! dominated by $\rho^{0}(\sim 100 \%)$! ISOSPIN VIOLATING 2 particle decay (back-to-back), not a 3-particle decay !

Isospin violating charmonium transistions

Only 2 decays for charmonium measured in PDG

Decays into $J / \psi(1 S)$ and anything

	$J / \psi(1 S)$ anything	$(61.0 \pm 0.6) \%$
	$J / \psi(1 S)$ neutrals	$(25.11 \pm 0.33) \%$
$J / \psi(1 S) \pi^{+} \pi^{-}$	$(34.46 \pm 0.30) \%$	
$\boldsymbol{\psi (2 S)}$	$\left(\psi(1 S) \pi^{0} \pi^{0}\right.$	$(3.14 \pm 0.31) \%$
$J / \psi(1 S) \eta$	$(1.268 \pm 0.05) \%$	
	$J / \psi(1 S) \pi^{0}$	Hadronic decays
	$(8.6 \pm 1.3) \times 10^{-3}$	
$\pi^{0} h_{c}(1 P)$		

but branching fraction of
$\mathcal{B}(X(3872) \rightarrow J / \psi \rho)$ is order of $\sim 5-10 \%$ factor $\sim 10^{2}$ too large

Is there isospin inside the $X(3872)$?

No evidence. Significant ρ / ω interference can explain lineshape.
(proposed by Terasaki, Prog. Theor. Phys. 122(2010)1285)

What important knowledge is missing?
 \rightarrow Width of $\mathrm{X}(3872)$

upper limit on width (Belle I), $\Gamma<1.2 \mathrm{MeV}$
for pure $\chi_{\mathrm{c} 1}{ }^{\prime}$ charmonium state,
prediction $\Gamma=40 \mathrm{keV}$
G. Y. Chen, J. P. Ma, arXiv:0802.2982[hep-ph], Phys. Rev. D77(2008]097501.
if molecule

- must be larger than width of D^{*}
$\Gamma>82.3 \pm 1.2 \pm 1.4 \mathrm{keV}$
E. Braaten, arXiv:0711.1854 [hep-ph], Phys. Rev. D77(2008)034019.
- long-range molecular components in the wavefunction?
\rightarrow measure the width of the $X(3872)$
in the sub-MeV regime

X(3872) Width Measurement at Belle I

$M_{\mathrm{bc}} \equiv \sqrt{\left(E_{\mathrm{beam}}^{\mathrm{cms}}\right)^{2}-\left(p_{B}^{\mathrm{cms}}\right)^{2}}$

$\mathrm{M}_{\mathrm{BC}} / \mathrm{GeV}$

$M\left(\mathrm{~J} / \psi \pi^{+} \pi^{-}\right) / \mathrm{GeV}$

$$
\Delta E \equiv E_{B}^{\mathrm{cms}}-E_{\text {beam }}^{\mathrm{cms}}
$$

$\Delta \mathrm{E} / \mathrm{GeV}$

3-dim fit \rightarrow kinematical over-constraint provides access to observables smaller than detector resolution

Belle, Phys. Rev. D84(2011)052004

Reference Analysis: $\mathrm{B} \rightarrow \mathrm{K} \psi^{\prime}, \psi^{\prime} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$
$M_{\mathrm{bc}} \equiv \sqrt{\left(E_{\mathrm{beam}}^{\mathrm{cms}}\right)^{2}-\left(p_{B}^{\mathrm{cms}}\right)^{2}}$

$$
\Delta E \equiv E_{B}^{\mathrm{cms}}-E_{\underline{\mathrm{beam}}}^{\mathrm{cms}}
$$

factor ~ 10 more statistics than $\mathrm{X}(3872) \rightarrow$ use as reference signal
\rightarrow fix resolution parameters
\rightarrow fix absolute mass scale (MC/data shift $+0.92 \pm 0.06 \mathrm{MeV}$)

Measurement of width of $X(3872)$

- Correlation function from MC
Γ (output) $=\mathrm{f}(\Gamma$ (input) $)$
- 3-dim fits validated with ψ^{\prime} width $\Gamma_{\psi}=0.52 \pm 0.11 \mathrm{MeV}$ (PDG $0.304 \pm 0.009 \mathrm{MeV}$)
\rightarrow bias $0.23 \pm 0.11 \mathrm{MeV}$
- procedure for upper limit: width in 3-dim fit fixed

$\mathrm{n}_{\text {signal }}$ and n_{BG} floating
\rightarrow calculate likelihood
- $\quad \Gamma_{\times(3872)}<\underbrace{0.95 \mathrm{MeV}+\text { bias }}$

1.2 MeV

- implication: width of $X(3872)$ can be measured at Belle II

$X(3872)$ in B decays

Exercise:

$$
\begin{aligned}
& \mathrm{B} \rightarrow \mathrm{~K} \times(3872) \\
& 0 \rightarrow 0-1+ \\
& \text { parity }(-1) \rightarrow \text { parity }(-1) \times(+1) \times(-1)^{\text {L }}
\end{aligned}
$$

Exercise:

$$
\begin{gathered}
B \rightarrow K \times(3872) \\
0 \rightarrow 0-1+
\end{gathered}
$$

$$
\text { parity }(-1) \rightarrow \text { parity }(-1) \times(+1) \times(-1)^{\llcorner }
$$

We need $\mathrm{L}=1$ to create $\mathrm{J}=1$, but this violates parity.
The $X(3872)$ is created in a parity violating weak decay.

Y(4260)
 a gluonic hybrid state?

Note: recent notation
by PDG as X(4260)

Y(4260)

- initial state radiation events
$\mathrm{e}^{+\mathrm{e}-\rightarrow \gamma \mathrm{J} / \psi \pi+\pi-}$ (undetected γ parallel to beam axis)
- mass $>4 \mathrm{GeV}$
far above $\mathrm{D}\left({ }^{*}\right) \mathrm{D}\left(^{*}\right)$ thresholds decay to $J / \psi \pi+\pi-$ should be suppressed
- width $<100 \mathrm{MeV}$ quite narrow for such a high state
- quantum numbers must be (based upon production mechanism)
${ }^{P} P C=1--$
initial state radiation

Y(4260) Parameters

	BaBar [1]	CLEO-c [2]	Belle [3]	Belle [4]	BaBar [5]	BaBar [6]
\mathcal{L}	$211 \mathrm{fb}^{-1}$	$13.3 \mathrm{fb}^{-1}$	$553 \mathrm{fb}^{-1}$	$548 \mathrm{fb}^{-1}$	$454 \mathrm{fb}^{-1}$	$454 \mathrm{fb}^{-1}$
N	125 ± 23	$14.1_{-4.2}^{+5.2}$	165 ± 24	324 ± 21	344 ± 39	-
Significance	$\simeq 8 \sigma$	$\simeq 4.9 \sigma$	$\geq 7 \sigma$	$\geq 15 \sigma$	-	-
m / MeV	$4259 \pm 8_{-6}^{+2}$	$4283_{-16}^{+17} \pm 4$	$4295 \pm 10_{-3}^{+10}$	$4247 \pm 12_{-32}^{+17}$	$4252 \pm 6_{-3}^{+2}$	$4244 \pm 5 \pm 4$
Γ / MeV	$88 \pm 23_{-4}^{+6}$	70_{-25}^{+40}	$133 \pm 26_{-6}^{+13}$	$108 \pm 19 \pm 10$	$105 \pm 18_{-6}^{+4}$	$114_{-15}^{+16} \pm$ 7

[1] BaBar Collaboration, arXiv:hep-ex/0506081, Phys. Rev. Lett. 95(2005)142001.
[2] CLEO-c Collaboration, arXiv:hep-ex/0611021, Phys. Rev. D74(2006)091104.
[3] Belle Collaboration, arXiv:hep-ex/0612006.
[4] Belle Collaboration, arXiv:0707.2541[hep-ex], Phys. Rev. Lett. 99(2007)182004.
[5] BaBar Collaboration, arXiv:0808.1543[hep-ex].
[6] BaBar Collaboration, arXiv:1204.2158[hep-ex], Phys. Rev. D86(2012)0511け2.

BESIII Experiment at BEPC II (symmetric !)

Superconducting solenoid
$\mathrm{B}=1 \mathrm{~T}$
no silicon vertex detector, because only D mesons (no separation of B mesons and D mesons required)
no Cerenkov detector (time-of-flight sufficient for K / π separation, low momentum)

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4260) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$at BESIII

BESIII, PRL110(2013)252001

Is the $Y(4260)$ exotic?

TETRAQUARK

HADRO-CHARMONIUM $\left[J / \psi \mathrm{f}_{0}(980)\right]$

Voloshin, Li
(Guo, Hanhart, Meissner)

Zhu; Kou, Pene; Close, Page;
Lattice QCD, Bernard et al.; Mei, Luo
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \mathrm{J} / \psi\left(\psi^{\prime}\right) \pi^{+} \pi^{-}: Y(4008,4260,4350,4660)$

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

What is the tail around 4.7 GeV ?

- Threshold $m(D)+m\left(D^{* *}\right)=4326 \mathrm{MeV}$

Lineshape distorted? No.

- Non-corrected radiative effects? No.

Radiative lower mass tail in $\mathrm{J} / \psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$ might generate higher mass tail in $\mathrm{m}\left(\mathrm{J} / \psi\right.$-with-wrong-mass $\left.\pi^{+} \pi^{-}\right)$.

- Fit funtion: Breit Wigner x Phasespace x Efficiency Efficiency $\mathrm{a}\left(\mathrm{m}-\mathrm{m}_{0}\right)+\mathrm{b}$ with $\mathrm{a}=7.4 \pm 1.3 \mathrm{GeV}-1, \mathrm{~b}=9.31 \pm 0.07$ (Belle) changes factor ~ 2 over peak

Overpopulation of 1^{--}States

All same quantum number

No more $\left[J / \psi \pi^{+} \pi^{-}\right]$state up to 7 GeV

Note: radiative transitions between the states forbidden by parity
but apparently

- no mixing with other ψ states
- no mixing among them $Y(4260)$ seems not decay to $\psi^{\prime} \pi^{+} \pi^{-}$ $\mathrm{Y}(4350)$ seems not decay to $\mathrm{J} / \psi \pi^{+} \pi^{-}$

Y(4260): Comparison Belle and BaBar

- BaBar collisions head-on, dipole magnet close to IR
- Belle: $\pm 11 \mathrm{mrad}$
- slightly higher background at BaBar (also seen as MRad SVD radiation dose)
- backward acceptance for $0 \sim 180$ • limited

hep-ex/0612006, 553/fb

CMS polar angle of $\mathrm{Y}(4260)$ to $\mathrm{e}-$ beam

What is the $Y(4260)$?
A hybrid? $[Q Q]_{8} g$

Does the $\mathrm{Y}(4260)$ decay to $\mathrm{e}+\mathrm{e}-$?

- very small coupling to $\mathrm{e}+\mathrm{e}-$
(although JP=1--)
$\operatorname{BR}\left(\mathrm{J} / \psi \pi^{+} \pi^{-}\right) \times \Gamma\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)=$
(7.5 $\pm 0.9 \pm 0.8) \mathrm{eV}$

BaBar, arXiv:0808.1543

- This is a partial width of the order ,,eV" of a state which is $\sim 100 \mathrm{MeV}$ total width!
 \rightarrow factor 10^{8} suppressed

What is blocking these decays?
(maybe the gluonic string ?)

Z(4430)+

$$
\begin{array}{r}
\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \psi^{\prime} \pi^{-} \\
\psi^{\prime} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}
\end{array}
$$

A charged state can never be a charmonium state.

$$
\mathrm{Z}(4430)^{+}
$$

Belle
Phys. Rev. D80(2009)031104 605/fb

 $m=4433 \pm 4 \pm 2 \mathrm{MeV}, \Gamma=45_{-13}^{+18+30} \mathrm{MeV}$ Belle, Phys. Rev D80(2009)031104

Long discussion between Belle and BaBar (2007-2014)

$$
\text { Is the } \mathrm{Z}+(4430) \text { a kinematical effect ? }
$$

- $\cos \theta_{K}$, the normalized dot-product between the $K \pi$ three-momentum vector in the parent- B rest frame and the kaon three-momentum vector after a Lorentz transformation from the B meson rest frame to the $K \pi$ rest frame
- $\cos \theta_{\psi}$, the normalized dot-product of the $\psi^{\prime} \pi^{\mp}$ three-momentum vector in the parent B meson rest frame and the ψ^{\prime} three-momentum vector in the $\psi^{\prime} \pi^{\mp}$ rest frame.
$\cos \theta_{K}$ is correlated with $m\left(K^{ \pm} \pi^{\mp}\right), \cos \theta_{\psi}$ is correlabed with $m\left(\psi \pi^{\mp}\right), \cos \theta_{K}$ is correlated with $\cos \theta_{\psi}$

TRUE!

MC with angular correlations can describe data well.
No Z^{+}states in red line (MC) required! BaBar, arXiv:1111.5919, Phys.Rev. D85(2012)052003

