Spectroscopy of exotic states (Experimental aspects)

Jens Sören Lange Justus-Liebig-Universität Gießen

SFB 1044 Summer School 29.08.–01.09.2017 Boppard, Germany

OUTLINE

- Lecture 1: The Past and Present
 - How it all began (on a parking lot)
 - The X, the Y and the Z
 - What is "beam constraint"?
- Lecture 2: The Future
 - Dalitz formalism: how to "see" quantum numbers
 - (Bottomonium: recoil mass, kinematic reflections → BACKUP)
 - Belle II (ready to take data ?)
 - Panda, an X factory! ("detailed balance")

Lecture 2

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

K*(892) K*(1430)

Confirmation of the Z(4430)⁺ at LHCb

LHCb

Velo RICH1 MAGNET RICH2 MUON System Tracking Stations Calorimeters

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

X(3872) event

LHCb Event Display

Why forward boost?

Is it a fixed target experiment?

N.B. the precessor experiment, HERA-B, was fixed target with wire targets, moved into the beam.

No! It is a pp interaction. So, why is LHCb "peaked forward"?

b quark production at LHCb is dominated by gluon gluon fusion $\sqrt{s}`=x_1^{}~x_2^{}~\sqrt{s},$ average product is 0.1

prefers asymmetric parton momentum fractions

LHCb

Cross sections at 14 TeV:

Belle

1-4 GeV

- Typical decay length of B hadron ~ 7 mm ~200 um
- Decay products with p ~ 1 200 GeV
 Advantage: high momentum
 detector materials don't have to be very thin!

LHCb

Uli Uwer, Heidelberg

Why so many tracks at LHCb ?

Confirmation of the $Z_c(4430)^+$ in B meson decays

$$B^0 \to K^{\pm} \qquad \underbrace{\psi' \pi^{\mp}}_{\checkmark}$$

LHCb, PRL 112(2014)222002

significance $\geq 13.9\sigma$

 $J^{P}=1^{+}$ established (other J^{P} rejected by $\geq 9.7\sigma$)

4-dim Dalitz Fit $\Phi = (M_{K\pi}^2, M_{J/\psi\pi}^2, \theta_{J/\psi}, \varphi)$

Z(4430)

ARGAND PLOT: resonant character of Z^+ states

Why a Breit-Wigner has counter clockwise phase motion.

$$\frac{m\Gamma}{s-m^2+im\Gamma} = \frac{mI(s-m^3\Gamma)}{(s-m^2)^2+m^2\Gamma^2} \bigcirc i \frac{m^2\Gamma^2}{(s-m^2)^2+m^2\Gamma^2}$$
PDG convention
Belle and LHCb convention is minus

$$\mathcal{M}_{ba}^{\text{pole}}\Big|_{N=1} = -\frac{g_b \ g_a}{s - M_{\text{BW}}^2 + i\sqrt{s}\Gamma_{\text{BW}}}$$

PDG, Review "Resonances", 2016 version, p. 8

Howto determine the quantum number of the Z(4430) ?

DALITZ FORMALISM

Example: decay of a scalar to 3 scalars

Constraint	DOF
3 four-vectors	12
masses m_1 , m_2 , m_3 fixed	-3
Energy and momentum conserved	-4
rotational invariance (Euler angles)	-3

10 $(m_1 + m_2)^2$ $(M - m_1)^2$ 8 $(m_{23}^2)_{\rm max}$ m²₂₃ (GeV²) 6 $(M - m_3)^2$ $(m_{23}^2)_{\min}$ $(m_2 + m_3)^2$ 2 0 $\frac{2}{m_{12}^2}$ (GeV²) 0 1 4 5

Kinematics fully determined by 2 variables!

2

3-particle kinematics, mapped onto Dalitz space

Dalitz plot example: p $\overline{p} \rightarrow K K \pi$

J \mathbf{L} 1 Angular distribution 0 0 0 1 $\cos^2 \theta$ 0 1 1 M. T. Lakata, Ph. D. Thesis, $(\cos^2\theta - \frac{1}{3})^2$ 0 $\mathbf{2}$ $\mathbf{2}$ University of California Berkeley, 1998 Why do we "see" angular distributions in m² distributions in a Dalitz plot?

 $f(m_{AB}, m_{BC}) = f_S(m_{AB}, m_{BC}) \times \varepsilon(m_{AB}, m_{BC}) + f_B(m_{AB}, m_{BC})$

COMPLEX NUMBERS

$$f_S(m_{AB}, m_{BC}) = \sum_{\lambda} |\sum_R T_{fi}^{R,\lambda}|^2$$

signal density in Dalitz plot (number of events in a bin)

Polarisations e.g. $\lambda = -1,0,1$ for J=1

$$T_{fi}(m_{AB}, m_{BC}) = \frac{1}{m_R^2 - s_R - im_R \Gamma_{tot}(s_R)}$$

$$\cdot F_M^{L_M} \cdot F_R^{L_R} \cdot (\frac{p_M}{m_M})^{L_M} \cdot (\frac{p_R}{\sqrt{s_R}})^{L_R} \cdot T_\lambda .$$
Formfactors
Angular dependence

Momenta in the center-of-mass frames Momentum dependance enters explicitely !

Formfactors

often: Blatt-Weisskopf barrier factors

$$F^{0}(z) = 1$$

$$F^{1}(z) = \frac{\sqrt{1+z_{0}}}{1+z}$$

$$F^{2}(z) = \frac{\sqrt{z_{0}^{2}+3z_{0}+9}}{z^{2}+3z+9}$$

$$F^{3}(z) = \frac{\sqrt{z_{0}^{3}+6z_{0}^{2}+45z_{0}+225}}{z^{3}+6z^{2}+45z+225}$$

Here $z=r^2p^2$ with a scale parameter representing the radius of the centrifugal barrier and usually set to $R\simeq 1.6 \ (\text{GeV/c})^{-1}$, which is $R\simeq 3-4$ fm. For z_0 we use p_{R0} which is the R resonance daughters momentum calculated for the pole mass of R.

Width (in the Breit–Wigner Term)

$$\Gamma(s_R) = \Gamma_0(\frac{p_R}{p_{R0}})^{2L_R+1} \frac{m_R}{\sqrt{s_R}} \cdot F_R^2$$

(again, using Blatt-Weisskopf)

Angular dependant term

$$T_{\lambda} = d^J_{\lambda\lambda'}(\vartheta_{AB})$$

where J is the spin of the $R \rightarrow AB$ resonance and ϑ_{AB} its polar angle ("helicity angle"). $d_{\lambda\lambda'}^{J}$ are the Wigner D functions, which for $\lambda'=0$ can be expressed by the spherical harmonics

$$d_{\lambda 0}^J = \frac{4\pi}{2J+1} (-1)^{\lambda} Y_J^{-\lambda}$$

and for $\lambda=0$ and $\lambda'=0$ by the Legendre polynoms

$$d_{00}^J = P_J(\cos\vartheta_{AB}) \; .$$

legendre polynomials

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

J is spin of resonance R

L_1	L_2	J	T_{λ}
0	0	0	1
1	1	0	$\cos^2(artheta_{AC})$
2	2	0	$(\cos^2(\vartheta_{AC})$ -1/3) ²
1	0	1	1
0	1	1	1
1	1	$\left 1\right $	$\sin^2(artheta_{AC})$
1	2	1	$\cos^2(\vartheta_{AC}) + 1/3$
2	1	$\left 1\right $	$\cos^2(\vartheta_{AC}) + 1/3$
2	2	1	$(\cos(\vartheta_{AC})\sin(\vartheta_{AC}))^2$
2	0	2	1
0	2	2	1
1	1	2	$(\sin^2(\vartheta_{AC})+1/3)^2$
2	1	2	$\sin^2(artheta_{AC})$
2	2	2	$\cos^2(artheta_{AC})$

Dalitz plot example: p $\overline{p} \rightarrow K K \pi$

J \mathbf{L} 1 Angular distribution 0 0 0 1 $\cos^2 \theta$ 0 1 1 M. T. Lakata, Ph. D. Thesis, $(\cos^2\theta - \frac{1}{3})^2$ 0 $\mathbf{2}$ $\mathbf{2}$ University of California Berkeley, 1998

If $J_{total} = 1$, then distributions change

 $\begin{array}{l} \mathsf{B} \rightarrow \psi^{`} \ \mathsf{K} \ \pi \\ (\text{search for Z(4430) is } [\psi \ \pi^{`}]) \\ \text{scalar} \rightarrow \text{vector scalar scaler} \end{array}$

Constraint	DOF
3 four-vectors	12
masses m ₁ , m ₂ , m ₃ fixed	-3
energy and momentum conserved	-4
rotational invariance (Euler angles)	-3
vector helicity	2

a helicity angle y $\pi^ \theta_{K^*}$ $K^+\pi^ B_d^0$ $\mu^+\mu^ \mu^-$

requires 4-dim analysis!

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

4

If more than 2 variables: Dalitz plot shape becomes a function of the 3rd or 4th variable ...

FIG. 5: $\cos \theta$ as a function of the Dalitz plot variables, where θ is the angle between the helicity axes for $K\pi$ and $\pi\chi_{c1}$ intermediate resonances.

Belle, Phys. Rev. D78(2008)072004

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017
Legendre decomposition of Z(4430)+ data ("model independent")

LHCb, Phys. Rev. D 92(2015)112009

select a certain bin in $m(K\pi)$

find the decomposition in Legendre polynomials in $\cos(\theta_{K^*})$

this works, because it is an orthogonal system

LHCb, Phys. Rev. D 92(2015)112009

Let's assume, we established J=1 for a charged Z state by Legendre polynomes in the angular distribution here: Belle, PRD 78, 072004 (2008)

How to determine, that the Z state has $J^P=1^+$? (positive parity)

$$\begin{array}{l} \mathsf{B} \rightarrow \mathsf{K} \ \mathsf{Z}(4430) \\ \mathsf{0-} \rightarrow \mathsf{0-} 1(+ \ \mathsf{or} \ -) \end{array}$$

is a weak decay.

Parity may be violated!

Solution: $B \rightarrow K Z(4430)$ is a <u>weak</u> decay but $Z(4430) \rightarrow \psi \pi$ is a <u>strong</u> decay parity conserving !

need to check the angular distribution of the ψ (or the π) in the rest frame of the Z state

1-0- in S-wave $\rightarrow 1+$ 1-0- in P-wave $\rightarrow 1-$ (or 0- or 2-)

Interlude: interference in a Dalitz plot

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

An easy way to see that the Z(4430) is 1+.

Interference plays an important role: significance is higher, if destructive interference is allowed in the fit

A final remark about Breit-Wigner

relativistic

non-relativistic

$$A = \frac{m\Gamma}{s - m^2 + im\Gamma} \qquad \qquad A = \frac{\Gamma/2}{\sqrt{s - m + i\Gamma/2}}$$

PDG convention

$$\sigma = A^2 = \frac{m^2 \Gamma^2}{(s-m^2)^2 + m^2 \Gamma^2}$$

$$\sigma = \frac{\Gamma^2/4}{(\sqrt{s} - m)^2 + \Gamma^2/4}$$

not Lorentz invariant, but sufficient in many cases

Almost all the observed, narrow Z states are $\mathsf{J}^\mathsf{P}{=}1^+$

Why?

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

Pentaquark decay

The P(4450) pentaquark LHCb, arXiv:1507.03414 Phys. Rev. Lett. 115(2015)072001

 $\begin{array}{l} 26007 {\pm} 166 \ \Lambda_b \ \text{candidates} \\ \Lambda_b \rightarrow \mathsf{K} \ [\mathsf{J}/\psi \ \mathsf{p}] \end{array}$

[MeV]	$P_{c}(4450)^{+}$
Mass	$4449.8 \pm 1.7 \pm 2.5$
$\overline{\chi_{c1}(1P)p}$	4448.93 ± 0.07
$\Lambda_{ m c}^{+*}\overline{ m D}^{0}$	4457.09 ± 0.35
$\Sigma_{\rm c} \overline{\rm D}^{0*}$	4459.9 ± 0.5
$\Sigma_{ m c}\overline{ m D}^{0}\pi^{0}$	4452.7 ± 0.5

several thresholds in the vicinity

resonant character

Similarities of "tetraquark" and "pentaquark"

Why is LHCb better for the pentaquark than Belle II?

Reminder: decay to J/ψ p.

Mt. Tsukuba

SuperKEKB asymmetric B meson factory, e+ e- → BB adjusted to Y(4S) resonance, √s=10.6 GeV different beam energies
8 GeV → 7 GeV (lower emittance)
3.5 GeV → 4 GeV (Touschek lifetime)
Upgrade: luminosity peak x40, integrated x50

Belle II Detector

.inac

Background increase x factor 10–20

Trigger rate ~400 Hz (Belle) \rightarrow 30.000 Hz (Belle II)

Installation of 100 new LER Dipole Magnets

field measurement

Installation of 100 new LER bending magnets done

move into tunnel

carry on an air-pallet

SuperKEKB Status, 7th BPAC, Mar. 11, 2013, K. Akai

Install over HER magnets

19

Interaction Region

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

Nano-Beam Scheme

IP Profile for Belle and Belle II (,,nanobeam") $100\mu m(H) \times 2\mu m(V) \rightarrow 10\mu m(H) \times 59nm(V)$

Belle Rotation 03/2013

for larger crossing angle 22 mrad \rightarrow 83 mrad (nanobeam)

18.6 cm @ end of platform (accuracy 0.5 mm)

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

SuperKEKB/Belle II schedule

First turns and successful storage of beams in the SuperKEKB electron and positron rings

March 2nd, 2016

High Energy Accelerator Research Organization (KEK)

Phase I operation history

max. stored beam current 870 mA (HER), 1010 mA (LER)

Belle I Detector (Upgrade of the Belle Detector)

13.3 m

7.24 m

CsI(TI) EM calorimeter: waveform sampling electronics, pure CsI for end-caps

4 layer inner tracker → 2 layers PXD (DEPFET) + 4 layers DSSD

Central Drift Chamber: smaller cell size, long lever arm

Belle II Technical Design Report: arXiv:1011.0352

RPC μ & K_L counter: scintillator + Si-PM for end-caps...

7.1 m

Time-of-Flight, Aerogel Cherenkov Counter → Time-of-Propagation counter (barrel), Proximity focusing Aerogel RICH (forward)

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

B-KLM Installation

completed 11/2013 RPCs exchanged by scintillator in endcap and 2 inner layers in barrel

During installation, modules have been checked, found to be healthy.

The 1st New Detector Installed

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

CDC (Charged Drift Chamber)

wire stringing finished (01/2014), 51456 wires

Improved resolution: $\sigma(p_T)/p_T =$ 0.19 $p_T \oplus 0.30/\beta$ (Belle) 0.11 $p_T \oplus 0.30/\beta$ (Belle II) dE/dx 6.8% \rightarrow 4.8%

New Belle II Vertex Detector

- 4-layer SVD R = 3.8, 8.0, 11.5, 14 cm
- 2-layer PXD R = 1.4, 2.2 cm
- Beampipe
 R = 1.0 cm

40 PXD modules 250 × 768 pixels $\rightarrow \simeq 8 \times 10^6$ pixels 50 × 55 µm, d=75 µm ≥ 1 MRad per year

Vertex resolution in beam direction: **improvement factor** ~2 50 μ m \rightarrow 25 μ m

Belle II DEPFET Pixel Detector

Univ. Bonn, DESY, Univ. Giessen, Univ. Göttingen, Univ. Hamburg, Univ. Heidelberg, KIT Karlsruhe, Univ. Mainz, HLL München, MPI München, LMU München, TU München

DEPFET Principle

every pixel contains a p–FET (on n-substrate) clear can be operated at high rates (30 kHz at Belle II) then <u>current</u> flows to drain and is measured by an ADC (ASIC) Belle II PXD has $\sim 8 \times 10^6$ pixels
TOP (Time-of-Propagation Counter)

- Photon detector: Hamamatsu SL10 MCP-PMT
 - $\Delta t \leq 50 \text{ ps}$
 - single photon sensitivity
 - operated in B=1.5 T field
- Estimated kaon fake rate factor 2-5 smaller than Belle (@ 95% kaon efficiency)

reconstruct Cherenkov angle from

- (X,Y)
- time of propagation

Mirror

TOP Assembly of 1st Module

Glue joint between two bars

Clean Room @ KEK, Fuji Hall

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

2014/10/29 16:32

Prism

Laser in TOP module Photo: K. Inami (Nagoya)

TOP installation finisned (06/2016) Modules form a self-supporting arc

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

CTT I

16.05.2016 First night after "strongback" support were removed \rightarrow a M5.4 earthquake with epicenter in Ibaraki prefecture ! http://earthquake.usgs.gov/earthquakes/eventpage/us10005hqy#executive

iTOP motion - Center of span

Sören Lange | Exotic States (Experiment) | SFB 1044 Summer School, Boppard, 08/2017

Final focusing quadrupoles (QCS) installed at IR, 55 superconducting coils, 2 cryostats

ROLL-IN, 11.04.2017

PEH

X(3872) factory

Charmonium(-like) Production in pp collisions

- X(3872) has 1++ (C=+)
- In e+e- collisions only J^{PC}=1-- can be produced directly in pp collisions any quantum number

• 2 mechanisms:

 $\begin{array}{lll} \mbox{Formation} & p \overline{\underline{p}} \rightarrow X(3872) \\ \mbox{Production} & pp \rightarrow X(3872) + meson(s) \ @ \ higher \ energy \end{array}$

(no parking lot)

FAIR (<u>F</u>acility for <u>A</u>nti-Proton and <u>I</u>on <u>R</u>esearch) Helmholtz Center GSI Darmstadt (Germany)

HESR (High Energy Storage Ring)

Question: what's that large dipole magnet behind Panda good for?

→beam deflection for p_{beam}=15 GeV/c 4.2 cm @ z=6m (end of dipole)

Question: why is the HESR an "accelerator" and not (only) a "storage ring" ?

The Panda Pellet Target

Anti-proton beam momentum p≤15 GeV/c → √s≤5.5 GeV

access to states higher than 5 GeV ! not available in Belle II (B decays) neither at BesIII

B=2 T (high!)

fixed target \rightarrow high p_z of tracks (boosted)

NO TRIGGER full reconstruction online with interaction rate 2×10^7 /s

Panda is a fixed target experiment

$$\sqrt{s} = \sqrt{2m_p^2 + 2m_p}\sqrt{p_{beam}^2 + m_p^2} \quad \text{Homework}$$

p_{beam} / GeV/c	\sqrt{s} / GeV	Resonance
4.064	3.096	J/ψ
6.234	3.686	ψ'
6.571	3.770	$ \psi'' $
6.991	3.872	X(3872)
7.277	3.940	Y(3940)
7.705	4.040	$ \psi^{\prime\prime\prime} $
8.685	4.260	Y(4260)

$$\beta_{cms}=0.89$$
 (very high!)
 $\beta\gamma=1.95$
 $\beta\gamma=0.43$ (Belle), 0.28 (Belle II)

Beam operators "tune" antiproton momentum energy (for resonance scan) is a non-linear function

X(3872)→ J/ ψ π^+ π^- Event, PandaRoot Simulation

PandaRoot Framework Simulation X(3872) \rightarrow J/ $\psi \pi^+ \pi^-$ TPC digitization, MVD Silicon Tracker digitization

XYZ coordinates / cm

$\psi' \rightarrow J/\psi \pi^+ \pi^-$ Mark II, 1973

How can we estimate cross sections at PANDA ? DETAILED BALANCE.

 $B^+ \rightarrow$ [charmonium]K⁺ decays, with [charmonium] \rightarrow pp LHCb, arXiv:1303.7133 [hep-ex], Eur. Phys. J. C73 (2013) 2462 LHCb, arXiv:1607.06446 [hep-ex], Phys.Lett. B769 (2017) 305

Remember Breit-Wigner?

From PDG, Review Section "Kinematics"

This is SQUARED (there is no "i" anymore)

The spin-averaged Breit-Wigner cross section for a spin-J resonance produced in the collision of particles of spin S_1 and S_2 is

$$\sigma_{BW}(E) = \frac{(2J+1)}{(2S_1+1)(2S_2+1)} \frac{\pi}{k^2} \frac{B_{\rm in}B_{\rm out}\Gamma_{\rm tot}^2}{(E-E_R)^2 + \Gamma_{\rm tot}^2/4} , \qquad (46.55)$$

where k is the c.m. momentum, E is the c.m. energy, and B_{in} and B_{out} branching fractions of the resonance into the entrance and exit channels. The 2S + 1

The (squared) Breit-Wigner formula relates the cross section and the branching fraction.

N.b. this is more a "coupling strength" but time-reversed it gives a branching fraction.

How do we know cross sections @ $\overline{P}ANDA$? \rightarrow Detailed Balance

Production @ Panda

$$\begin{split} \sigma[p\overline{p} \to X(3872)] &= \sigma_{BW}[p\overline{p} \to X \to \text{all}](m_{X(3872)}) \\ &= \frac{(2J+1) \cdot 4\pi}{m_{X(3872)}^2 - 4m_p^2} \cdot \frac{\mathcal{B}(X(3872) \to p\overline{p}) \cdot \overline{\mathcal{B}(X(3872) \to f)} \cdot \Gamma_{X(3872)}^2}{\underbrace{4(m_{X(3872)} - m_{X(3872)})^2}_{=0} + \Gamma_{X(3872)}^2} \\ &\stackrel{(J=1)}{=} \frac{3 \cdot 4\pi}{m_{X(3872)}^2 - 4m_p^2} \cdot \mathcal{B}(X(3872) \to p\overline{p}) & & \\ &$$

Trick: if sitting on the resonance, the width cancels out

Crosscheck of detailed balance with data from E760

Data points from E760, Phys. Rev. D47 (1993) 772 blue curves from detailed balance (LHCb as input) M. Galuska (Giessen)

Table: Peak cross sections $\sigma^{\text{peak}}_{[p\overline{p}\to R]}$ for $p\overline{p} \to R$ assuming Breit Wigner distributions with constant small width Γ_R .

Res. R	J	Mass m [MeV]	$\mathcal{B}(R \to p\overline{p})$	$\sigma^{\text{peak}}_{[p\overline{p}\to R]} \pm \text{err. fr. } \mathcal{B}(R \to p\overline{p}) \pm \text{err. fr. } m_R$
$J/\psi(1S)$	1	3096.916 ± 0.011	$(2.17 \pm 0.07) \cdot 10^{-3}$	$5.25 \pm 0.17 \pm 0.00 \mu b$
ψ(2S)	1	3686.109 ^{+0.012} -0.014	$(2.76 \pm 0.12) \cdot 10^{-4}$	$402 \pm 18 \pm 4 \text{ nb}$
$\eta_c(1S)$	0	2981.0 ± 1.1	$(1.41 \pm 0.17) \cdot 10^{-3}$	$1.29 \pm 0.16 \pm 0.00 \mu b$
$\eta_c(1S)$	0	2981.0 ± 1.1	$(1.32 \pm 0.19) \cdot 10^{-3}$	$1.21 \pm 0.17 \pm 0.00 \mu b$
$\eta_c(2S)$	0	3638.9 ± 1.3	$(1.85 \pm 1.26) \cdot 10^{-4}$	$93 \pm 63 \pm 0$ nb
$\eta_c(2S)$	0	3638.9 ± 1.3	$(3.12 \pm 1.65) \cdot 10^{-4}$	< 157 ± 83 ± 0 nb (95% CL)
$\chi_{c0}(1P)$	0	3414.75 ± 0.31	$(2.23 \pm 0.13) \cdot 10^{-4}$	134.1 ± 7.8 ± 0 nb
$h_c(1P)$	1	3525.41 ± 0.16	$(8.95 \pm 5.21) \cdot 10^{-4}$	$1.47 \pm 0.86 \pm 0 \mu b$
$h_c(1P)$	1	3525.41 ± 0.16	$(1.68 \pm 0.05) \cdot 10^{-3}$	< 2776 ± 87 ± 0 nb (95% CL)
X(3872)	1	3871.68 ± 0.17	$(5.31 \pm 0.00) \cdot 10^{-4}$	$< 68.0 \pm 4.0 \pm 0.0$ nb (95% CL)
X(3915)	?	3917.5 ± 2.7	$(27 \pm 10) \cdot 10^3$	not isolated

Let's assume 50 nb (conservative)

Cross sections at PANDA

$$\begin{split} \mathsf{L} &= 1 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1} \text{ (start-up phase)} \\ 1 \text{ nb} &= 1 \times 10^{-9} \times 10^{-24} \text{ cm}^2 \\ 1 \text{ nb}^{-1} &= 10^{33} \text{ cm}^{-2} \end{split}$$

L=0.01 collisions per nanobarn and per second

for 1 nb production cross section 0.01 * 3600 * 24 = 864 events per 1 day

```
for X(3872): estimate 50 nb
43.500 per 1 day
Decay into J/\psi\pi\pi (assume 5% branching fraction)
\rightarrow 2160 events per day (in Panda start-up phase!)
Belle recorded ~150 events in ~10 years
```

End of Lecture 2 Thank you!

Backup Slides

Bottomonium-like States
RECOIL MASS

$$m_B = \sqrt{E_B^{*2} - \vec{p}_B^{*2}} \tag{1}$$

where * indicates the center-of-mass system.

In a two-body system:
$$\vec{p}_A^* = -\vec{p}_B^*$$
 and $E_A^* + E_B^* = \sqrt{s}$.
(back-to-back in cms)

$$m_B = \sqrt{(\sqrt{s} - E_A^*)^2 - p_A^{*2}} \tag{2}$$

This implies: the mass of B can be calculated from measurements of A only. B does not need to be measured. \rightarrow sometimes also referred to as <u>"missing mass</u>"

	$\Upsilon(10860)$	$\Upsilon(11020)$	
mass (GeV)	10.876 ± 0.002	10.996 ± 0.002	
width (MeV)	43 ± 4	37 ± 3	
ϕ (rad)	2.11 ± 0.12	0.12 ± 0.07	
PDG mass (GeV)	10.865 ± 0.008	11.019 ± 0.008	
PDG width (MeV)	110 ± 13	79 ± 16	

BaBar, 0809.4120[hep-ex], Phys. Rev. Lett. 102(2009)012001 Events "tagged" with a B meson (N_{track}≥3, Evis>4.5 GeV, R₂<0.2)

Y(5S) data taking

- KEK-B and Belle changed beam energy to Y(5S)
- 22 points, 1 fb⁻¹ per point, 5 MeV apart
 61 points, 0.5 fb⁻¹ per point, 1 MeV apart
- investigate [vector \rightarrow vector $\pi \pi$] as an analogy to Y(4260) $\rightarrow J/\psi \pi \pi$

Υ (5S) \rightarrow X $\pi^+\pi^-$ reconstruction

Y(5S) Decays

π^+ π^- missing mass

First observation of $h_b(1P)$ and $h_b(2P)$

Belle, 121.4 fb⁻¹ Phys. Rev. Lett 108(2011)032001 arXiv:1103.3419

Advantage of recoil mass technique:

reconstruction of decay (final state particles) on recoil side not required $\rightarrow 100\%$ reconstruction efficiency

Resonant substructure of $\Upsilon(5S) \rightarrow \Upsilon(nS) \pi^+\pi^-$ (n=1,2,3)

 $\Upsilon(5S) \rightarrow \Upsilon(nS) \pi + \pi -$ $\downarrow \mu + \mu -$ (n = 1, 2, 3)

 $\Upsilon(5S) \rightarrow \Upsilon(nS) \pi + \pi -$ $\downarrow \mu + \mu -$ (n = 1, 2, 3)

REFLECTION

$$Y(5S) \rightarrow Y(3S) \pi_1^+ \pi_1^- \rightarrow Y(1S) \pi_2^+ \pi_2^- \pi_1^+ \pi_1^-$$

monoenergetic monoenergetic $Y(3S) \rightarrow Y(1S) Y(5S) \rightarrow Y(3S)$

Now we combine Y(1S) with $\pi_1^+ \pi_1^-$ gives a (wrong) peak!

Y(2S)π⁺π⁻

A different type of reflection

 π^+ from Z^+ decay is monoenergetic (in Z rest frame), because of two-body kinematics π^+ from $\Upsilon(5S)$ decay in case of Z^- is monoenergetic, because two-body decay and initial energy is fixed $\rightarrow [\Upsilon(2S)\pi^+(\text{from }\Upsilon(5S) \text{ decay})]$ combination gives a (wrong) peak Solution: the one (the other) π^+ is high (low) momentum \rightarrow "identify" the pions (subscript "max") Side remark: the pure observation of these reflections tell us, that there is a Z^+ and a Z^-

$\Upsilon(5S) \rightarrow \Upsilon(nS) \pi^+\pi^-$ Dalitz plots

 \rightarrow Signals of $\rm Z_{b}(10610)$ and $\rm Z_{b}(10650)~CHARGED~STATES$

Summary of Z_b parameters

Thresholds (PDG) BB* 10,604 GeV B*B* 10,650 GeV

Final state	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$	$h_b(2P)\pi^+\pi^-$
$M[Z_b(10610)], \mathrm{MeV}/c^2$	$10611 \pm 4 \pm 3$	$10609 \pm 2 \pm 3$	$10608 \pm 2 \pm 3$	$10605 \pm 2^{+3}_{-1}$	10599^{+6+5}_{-3-4}
$\Gamma[Z_b(10610)], {\rm MeV}$	$22.3 \pm 7.7^{+3.0}_{-4.0}$	$24.2 \pm 3.1^{+2.0}_{-3.0}$	$17.6 \pm 3.0 \pm 3.0$	$11.4^{+4.5+2.1}_{-3.9-1.2}$	13^{+10+9}_{-8-7}
$M[Z_b(10650)], {\rm MeV}/c^2$	$10657\pm 6\pm 3$	$10651 \pm 2 \pm 3$	$10652 \pm 1 \pm 2$	$10654 \pm 3 {}^{+1}_{-2}$	10651^{+2+3}_{-3-2}
$\Gamma[Z_b(10650)], {\rm MeV}$	$16.3 \pm 9.8^{+6.0}_{-2.0}$	$13.3 \pm 3.3^{+4.0}_{-3.0}$	$8.4\pm2.0\pm2.0$	$20.9^{+5.4+2.1}_{-4.7-5.7}$	$19\pm7{+11\atop-7}$
Rel. normalization	$0.57 \pm 0.21^{+0.19}_{-0.04}$	$0.86 \pm 0.11^{+0.04}_{-0.10}$	$0.96 \pm 0.14^{+0.08}_{-0.05}$	$1.39 \pm 0.37^{+0.05}_{-0.15}$	$1.6^{+0.6+0.4}_{-0.4-0.6}$
Rel. phase, degrees	$58 \pm 43^{+4}_{-9}$	$-13 \pm 13^{+17}_{-8}$	$-9 \pm 19^{+11}_{-26}$	187^{+44+3}_{-57-12}	$181^{+65+74}_{-105-109}$

The two charged states are observed in 5 decays channels.

Reminder: any of these results were only possible because of one reason: we have factor $\geq 10^3$ too many events ...

$\Gamma[Y(5S) \rightarrow \pi \pi Y(nS)]$ is huge

Not only $Y(5S) \rightarrow Y(1S)\pi\pi$ is large, but also $Y(5S) \rightarrow Y(2S)\pi\pi$

