Modern Hadron Spectroscopy : Challenges and Opportunities

Adam Szczepaniak, Indiana University/Jefferson Lab

Lecture 1: Hadrons as laboratory for QCD:

- Introduction to QCD
- Bare vs effective effective quarks and gluons
- Phenomenology of Hadrons

Lecture 2: Phenomenology of hadron reactions

- Kinematics and observables
- Space time picture of Parton interactions and Regge phenomena
- Properties of reaction amplitudes

Lecture 3: Complex analysis

Lecture 4: How to extract resonance information from the data

- Partial waves and resonance properties
- Amplitude analysis methods (spin complications)
- When (color neutral) mesons and baryons a smashed, their quarks overlap, "stick together" to form resonances (quasi QCD eigenstates). They are short lived and decay to lowest energy, asymptotic states (pions, K's, proton,...)
- Resonances are fundamental to our understanding of QCD dynamics since they appear beyond perturbation theory.
- (QCD) Resonances challenge QFT practitioners to develop all orders calculations (still ways to go).
- (QCD) Resonance lead to extremely rich phenomenology (e.g. XYZ states).
- In practice, one requires tools that relate asymptotic states before collision to asymptotic states after collision that include flexible parametrization of microscopic dynamics. This is often referred to as amplitude analysis. The rest of these lectures will focus on this topic.

$$
\begin{gathered}
\alpha=\alpha_{Q E D}=\frac{1}{137} \\
\psi(r) \propto e^{-\alpha m_{e} r}
\end{gathered}
$$

Bound states: compact wave function contains interaction to all orders.

$$
S(E, \theta)=1+O(\alpha)
$$

Born approximation : lowest order perturbation on free motion

Resonances: particles interact to all orders (like bound states) but eventually decay (connect with asymptotically free states). Their effect appears in the S-matrix

$$
H=H_{k i n}+V \rightarrow H_{0}+V(t) \quad V \rightarrow V(t)=V e^{-\epsilon|t|}
$$

Interaction is switched on adiabatically at $\mathrm{t}=0$

- Time evolution pictures: Schrodinger, Heisenberg, Interaction

$$
\begin{aligned}
& O_{I}(t)=e^{i H_{0}} O(0) e^{-i H_{0} t} \\
& |t\rangle_{I}=e^{i H_{0} t}|t\rangle_{S} \\
& \begin{array}{l}
H_{0, I}(t)=H_{0} \\
V_{I}(t)=e^{i H_{0}} V e^{-i H_{0} t} e^{-\epsilon|t|} \\
i \frac{d}{d t}|t\rangle_{I}=V_{I}(t)|t\rangle_{I}
\end{array} \\
& \longrightarrow \quad i \frac{d}{d t}|t\rangle_{I}=V_{I}(t)|t\rangle_{I}
\end{aligned}
$$

- As $t \rightarrow \pm \infty$ interaction picture states evolve to eigenstates of $H_{\text {kin, }}$ i.e. to free particles
- At $t=0$ interactions picture states are solution of the full Hamiltonian

$$
\left.\left.i \frac{d}{d t}|t\rangle_{I}=V_{I}(t)|t\rangle_{I} \quad \longrightarrow \quad|t\rangle_{I}=U(t,-\infty) \right\rvert\, \text { initial }\right\rangle
$$

Evolution operator

- S-matrix

$$
\begin{aligned}
& \left.S_{f i}=\langle f(t=+\infty)| i(t=-\infty\rangle=\langle f,(\text { out })| i,(\text { in })\right\rangle \\
& \quad=\langle f| U(+\infty,-\infty)|i\rangle \\
& U(+\infty,-\infty)=\mathcal{P} \exp \left(-i \int_{-\infty}^{+\infty} d t V_{I}(t)\right)=I-2 \pi i \delta\left(E_{f}-E_{i}\right) T
\end{aligned}
$$

- T-matrix

$$
\begin{aligned}
T=V+V G_{0} V+\cdots \quad G_{0}= & \frac{1}{E-H_{0}} \\
& E=E_{i}=E_{f}
\end{aligned}
$$

Example

$$
T=V+V G_{0} V+\cdots
$$

Nonrelativistic particle scarring in external potential

$$
\operatorname{dim} \lambda=-1
$$

$$
H=\frac{p^{2}}{2 \mu}+V
$$

Method 1: In coordinate space
Method 2: Lippmann-Schwinger (see above)

From method 1

$$
\begin{aligned}
& f(k)=\frac{\left[-\lambda \frac{\sin ^{2}(k a)}{\left(k a^{2}\right.}\right]}{\left[1+\frac{\lambda}{a} \frac{\sin (k a) \cos (k a)}{k a}\right]-i k\left[-\lambda \frac{\sin ^{2}(k a)}{(k a)^{2}}\right]} \\
& f(k)=\frac{K(E)}{1-i K(E) k}=\frac{1 \quad \mathrm{E}=\mathrm{k}^{2} / 2 \mu}{K^{-1}(E)-i k} \\
& =\frac{P(k)}{Q(k)} \quad \infty \text { of zeros zeros } \rightarrow \text { Poles }
\end{aligned}
$$

From method 2

$$
\begin{aligned}
& f(k)= \frac{-\lambda \frac{\sin ^{2}(k a)}{(k a)^{2}}}{1-\frac{1}{\pi} \int_{0}^{\infty} d E^{\prime} k^{\prime} \frac{-\lambda \frac{\sin ^{2}\left(k^{\prime} a\right)}{\left(k^{\prime} a\right)^{2}}}{E^{\prime}-E(k)}} \\
& k^{\prime}=k\left(E^{\prime}\right)=\sqrt{2 \mu E^{\prime}}
\end{aligned}
$$

$K\left(k=k_{R}+i k_{I}\right) \rightarrow$ const. $+O\left(e^{-2 k_{I} a}\right)=\frac{1}{i k}+O\left(e^{-2 k_{I} a}\right)$
$f(k)=\frac{K(E)}{1-i K(E) k}=O\left(e^{+2 i k_{I} a}\right)$
Essential singularity at infinity in the physical sheet !
"Conspiracy" between zeros and poles !!!
E.g. ∞ number of zeros of $\mathrm{K}(\mathrm{s})$ are "fixed" by geometry of the sphere ("dynamics") and this specific "physics" fixes all the poles.

In more general case (no fixed scattering radius) correlation between zeroes and poles persist", an infinite number poles requires infinite number of zeroes (and vice versa)

Simple model tov bow. extaval patilal le.g ís con accrss "qual woel" states

$$
\begin{array}{ll}
V(v)=\frac{\lambda}{2 \mu} \delta(r-a)-\frac{d^{2} u}{d^{2}}+V(v)=(u(v) & L \mu \varepsilon=v^{2} \\
u=\sin <a e^{\text {vegulu } a+r=0} & x<a
\end{array} \quad \lambda=\frac{\hat{\lambda}}{a^{2}} \quad l
$$

M: A sincat $B \cos 4 a \quad x>a$ fve wae.
at a: $A \sin k a+B \cosh A=\sin 2 a$

$$
\begin{aligned}
& \text { akAcosba }-a b b \sin u=a^{2} \operatorname{coshn}+\lambda \sin M_{a} \\
\Rightarrow & f=\cdots \quad \text { Boud sicles }=\cdots \quad \begin{array}{r}
-u_{+}+u_{-}+V=0 \\
u_{+}+v_{-}+v
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { In nikatisosha = Suka } \\
& +A^{2} 2 \cos ^{2} \angle a-B^{2} 2 \operatorname{siv}^{2} a=k a s k a+\lambda s \\
& \left(\begin{array}{cc}
-k s & -c \\
-k c & s
\end{array}\right)\binom{c}{k c+\lambda s}=\binom{A}{B} \quad \begin{array}{l}
A=-k_{a}-\lambda c s \\
n=\lambda s^{2} a
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{i} i^{i i^{h}}[A-i B]+\frac{1}{1} e^{+i b_{0}}[A+i B]
\end{aligned}
$$

$$
\begin{aligned}
& \text { incongy wowple woth dacie -e } \\
& S=\frac{A+i s}{A-i B} \quad f=\frac{s-1}{2 i}=\frac{B}{A-i B}=\frac{a \lambda s^{2}}{-\varepsilon_{n}-\lambda c s-i \times s^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{f}=\frac{f}{k}=\frac{1}{k^{-1}-i k} \quad k^{-1}=-\left[1+\lambda\left(\frac{1}{k}\right)_{c}\right]\binom{\frac{\varepsilon}{\zeta}}{\zeta}^{2} \frac{1}{\lambda}
\end{aligned}
$$

$$
L^{-1}=-\left[1+\lambda\left(\frac{1}{k}\right) c\right]\left(\frac{k}{3}\right)^{\frac{2}{\lambda}} \quad \lambda=1 \quad a=1
$$

$k^{-1}-i k$ will have leves in le striles

$$
\begin{aligned}
& \operatorname{mo} \operatorname{cost} C\left(\frac{n+1 \mid \pi}{a} \min 0, \cdots\right. \\
& a+c=0 \Rightarrow f^{\prime}=-1-\lambda \text { is finite. }
\end{aligned}
$$

$(x=>60,7 \approx-1$ theo is ores adilitowal skie, wean geo energh boved stait)
(1) Poles of $K^{-1} \Leftrightarrow$ zewos of anplidurle $\Rightarrow C D D$ xods. near bews of f^{-1} theva are poles \Rightarrow erowares Inte lius of $A \rightarrow \infty \Rightarrow$

\Rightarrow Polos (resoucus) soue to th vol aieis $k=(h+b) \pi / a$
\Rightarrow thas vioutrs unitaty:
 taiee $k=i 0 \quad$ Q $\rightarrow \infty$ (uppa velf plese)

$$
\begin{aligned}
& f=\frac{x \sin ^{2} k a-e^{2 a}}{-k-7 \sin \operatorname{car} \cosh A-i \times \sin ^{2} h_{1} \quad \sin ^{2} \rightarrow \frac{1}{2 i}\left(-e^{2}\right)} \\
& +\frac{x}{4} \frac{1}{2} e^{2 n}+\frac{i y}{4} e^{n 2} \rightarrow e^{2 a} \quad \text { inh } \rightarrow \frac{1}{2}\left(e^{2}\right)
\end{aligned}
$$

of \rightarrow blows upe eppivetion as e^{e} in ite urpece pleme.
$k \rightarrow-i l L \quad \eta \rightarrow \infty \quad \sin h \rightarrow \frac{1}{2} e^{\eta} \quad \cos b i e^{i}$
$m-\frac{x}{4} i e^{22}+i \frac{x}{y^{2}} e^{22} w e^{24} \quad\left\{-3 \operatorname{con} s^{2}\right.$
\Rightarrow the blow up is velatoo t eristane of wo of profian
oflen oue emplesiges dirporion artion.

$$
\begin{array}{r}
f^{x}[k)=f\left(-c^{*}\right] \\
\text { pore at } k \\
\text { cos an wiov } \\
\text { of }-c^{*}
\end{array}
$$

Cousiter $\hat{f}=\tilde{f} e^{t \text { 2ike }} \Rightarrow$ conneget inde uper plont. there is oo of poles in the upper plase.

$$
\hat{f}(k)=\sum_{2 k i}^{+\infty} \int_{-\infty}^{+\infty} d k^{\prime} \frac{\hat{f}\left[k^{\prime}\right]}{k^{\prime}-k}+\int_{c}^{\infty} \infty_{0}
$$

fo write Dis owe ueeds tha kwo the assjuptolic

Alternatively one (n'd use the lowa lalt plae \Rightarrow there ore unted, the resounes explicity
(as we'li see tle dath is on upper place)

Use enery thac
$K=\sqrt{E} 2 \mu$ use die folliving detrusiation $\sqrt{z}=\sqrt{12} e^{i t}=$ live is

$$
\begin{aligned}
& =-\sqrt{|E|}(1-i c)=-\sqrt{\text { iel }}+\boldsymbol{t}
\end{aligned}
$$

ove con write diperia for $f(t)$

$$
\begin{aligned}
& \rightarrow f(\varepsilon)=\frac{1}{i_{i}} \int_{0}^{\infty} d \varepsilon^{\prime} \frac{j m^{\prime} f\left(i^{\prime}\right)}{E^{\prime}-E}
\end{aligned}
$$

$$
\left.\hat{f}=\frac{x \sin ^{2} c a e^{2: k a}}{-k->\sin 2 \cos \theta \sin -i \times \sin ^{2} k:} \times \frac{1}{k} \right\rvert\, \hat{f}=e^{2 i \cos n} f
$$

$\left.\left|u_{1} \tilde{f}=k\right|^{\gamma}\right|^{2} E$ unitaiy, \Rightarrow hopsion veltion wald ivede f ord!
Wht we vovel $\hat{f} \Rightarrow$ unve indoruston tlen erpeciton velatia:
Whad aboord $\frac{1}{f} \Rightarrow \operatorname{lon} \frac{1}{f}=i k$, It coneres asumptotony but veeds 60 of ralos (CD7)).

Somposed the subhuctar wase wo umed

$$
\begin{aligned}
& I_{m x} f=k|f|^{2} \Rightarrow \text { measen } \\
& f(t)=\sum_{i}^{1} \int d t^{*} \frac{\operatorname{in} f(t)}{i!-t^{\prime}} \text { o contivito } \\
& \text { it inkis bun }
\end{aligned}
$$

$$
\hat{f}=\frac{\lambda \sin ^{2} k a e^{2 i k a}}{-k->\sin 2 a \cos h_{a}-i \times \sin ^{2} u_{t}}+\frac{1}{k}
$$

ve wituluge $\sin : \quad f_{B}=>\sin ^{3} k a$

$$
\begin{aligned}
& t=\frac{-x \sin ^{2} 6 / k}{2+\int \frac{x^{2} k / k}{\epsilon^{2}-\varepsilon}} \quad \frac{1}{k}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{i} f=d x+\text { poles it conerd } \\
& \frac{k}{\sin }+\frac{x(5)}{\sin x}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\bar{h}^{\prime} \mid \bar{u}\right)=(2 x)^{3} \delta^{3}\left(h^{\prime}-\dot{4}\right)=\left(2 m^{3} \frac{1}{k^{2}} \delta\left(h^{\prime} h\right) \delta^{2}\left(s^{\prime}-w\right)=\right. \\
& =(t h)^{3} \frac{1}{k^{2}}\left(\frac{d z}{d \varepsilon}\right)^{-1} \delta\left(t^{\prime} \cdot \varepsilon \left\lvert\, \delta^{1}\left(s^{\prime} \cdot \sigma\right) \quad E=\frac{t^{2}}{i} a\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \angle h^{\prime} \mid T(L)=\sum T_{e} Y_{\text {esen }} V_{e m} \\
& L_{u^{-1}}\left|;| |_{c}\right\rangle=\left(\left.2 u\right|^{3} \frac{1}{c_{p}} \delta\left|\varepsilon^{\prime} \cdot t\right| \sum_{1 \omega} Y_{1+6} V_{10} X\right. \\
& {[1-\underbrace{(2 i)^{2}} \frac{(2 i)}{4}(2 \mu) k T_{L}]} \\
& S_{1} S_{2}^{k}=1 \quad S_{L}=e^{2 i \delta} \\
& f_{\lambda}=\frac{(s-1)}{2 i} \\
& {[\because]=1+2 i k f_{t}=e^{2 ; i}} \\
& \Rightarrow\left\{_{i}=\frac{\left(e^{i t i}-1\right)}{i \cdot \varepsilon}=\frac{e^{i v} r r}{k}\right.
\end{aligned}
$$

$$
\begin{aligned}
& f_{e}=-\frac{1}{2}\left(\frac{l}{2}\right)\left(A+r(x)\left\langle n^{\prime} B y\right) R\right. \\
& f_{c}=-\frac{1}{2}\left(\frac{1}{L_{6}}\right) \int d_{z} P_{c}(\underset{c u c}{ })\left\langle b^{\prime}\right| 2_{\mu}+|L\rangle \\
& 2_{\mu} T=U+U G_{0} U+\ldots \quad S_{0}=\frac{1}{2_{\mu}+2-2_{\mu} E} \\
& \text { Toipe } V=\frac{A}{2 \mu a}=\delta(r-a) \quad \text { [A] }=-1
\end{aligned}
$$

$$
\begin{aligned}
& =\left[j_{i}(\text { ka })\right]^{2} A(l l+1) D_{l}(k>4) 4 \pi \\
& \therefore \therefore_{i / g}^{\prime} \int_{1}^{2} d z(t)=-j_{1}^{2}\left(\psi_{a}\right) A=-\frac{\sin ^{2} l_{x}}{\left(\text { ma }^{2}\right)^{2}} A
\end{aligned}
$$

$$
\begin{aligned}
& f_{0}=-\frac{1}{4 \pi} \frac{\mathrm{Ca}^{2} \mathrm{ha}}{(k a)^{2}} A
\end{aligned}
$$

$$
\begin{aligned}
& \text { Courrate in } 2^{\text {nod }} \text { adev: } \\
& \left\langle h^{1}\right| \tau_{\mu} V b_{2}^{2} \mu V(u)=\int d \sqrt{i V^{\prime}} \frac{A}{a^{2}} J|r-a| C_{0} \frac{A}{a^{2}} J\left|r^{\prime}-A\right| e^{\therefore h} \\
& \left.C_{v} \mid x, y\right): 1 e^{-i x^{\prime \prime}\left(x-x^{\prime}\right)} \frac{1}{\dot{k}^{2}-2 \mu^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{u^{2} d h}{(L n)^{3}}(6)^{3} j e^{4} A^{2}(1+1+1) \frac{1}{h^{2}-1 \mu 5}+\operatorname{le}\left(-\frac{1}{1}\right) \frac{1}{j_{0}}(-1)\right.
\end{aligned}
$$

S-matrix properties (in relativistic theory)

- Related to transition probability

$$
\left.P_{f i}=|\langle f| S| i\right\rangle\left.\right|^{2}=\langle i| S^{\dagger}|f\rangle\langle f| S|i\rangle
$$

- Conservation of Probability = Unitarity

$$
\begin{aligned}
& \sum_{f} P_{f i}=1 \\
& S^{\dagger} S=I
\end{aligned}
$$

$$
2 \operatorname{Im} T_{f t}=\sum_{n} 2 \pi \delta\left(E_{i}-E_{n}\right) T_{f n}^{*} T_{n i}
$$

- Lorentz symmetry: T is a product of Lorentz scalars and covariant factors representing wave functions of external states, e.g for $\pi\left(k_{1}\right)+N\left(p_{1}, \lambda_{1}\right) \rightarrow \pi\left(k_{2}\right)+N\left(p_{2}, \lambda_{2}\right)$

$$
\bar{u}\left(p_{1}, \lambda_{1}\right)\left[A(s, t)+\left(k_{1}+k_{2}\right)_{\mu} \gamma^{\mu} B(s, t)\right] u\left(p_{2}, \lambda_{2}\right)
$$

- Crossing symmetry: the same scalar functions describe all process related by permutation of legs between initial and final states (only the wave function change)

$$
\begin{aligned}
\pi\left(k_{1}\right)+\pi\left(-k_{2}\right) \rightarrow \bar{N}\left(-p_{1}, \mu_{1}\right)+N\left(p_{2}, \mu_{2}\right) \\
\bar{v}\left(p_{1}, \mu_{1}\right)\left[A(s, t)+\left(k_{1}+k_{2}\right)_{\mu} \gamma^{\mu} B(s, t)\right] u\left(p_{2}, \mu_{2}\right)
\end{aligned}
$$

- Analyticity: The scalar functions are analytical functions of invariants

N-to-M scattering depends on $4(N+M)-4-10=3(N+M)-10$ invariants
e.g for 2-to-2: 2 invariants related to the c.m. energy and scattering angle

$A(s, t, u)$ is a scalar function of mass dimension $=0$

How many independent variables describe

- Decay proces $\mathrm{A} \rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}$
- Three particle production $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}$

Helicity amplitudes

We work in the c.m. frame $\quad \frac{\vec{S} \cdot \vec{p}}{|\vec{p}|}|p, \lambda\rangle=\lambda|p, \lambda\rangle$

$$
\left\langle p_{3}, \lambda_{3} ; p_{4}, \lambda_{4}\right| A\left|p_{1}, \lambda_{1} ; p_{2}, \lambda_{2}\right\rangle=A_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}}(s, t, u)
$$

Helicity states vs canonical spin states: $\quad S_{z}|p, m\rangle_{z}=m|p, m\rangle_{z}$

$$
\begin{aligned}
& |p, m\rangle_{z}=\Lambda(\vec{p} \leftarrow 0)|0, m\rangle_{z} \\
& |p, \lambda\rangle=R(\hat{p}) \Lambda(|\vec{p}| \hat{z} \leftarrow 0)|0, m\rangle_{z}
\end{aligned}
$$

Exercise show this: $|p, \lambda\rangle_{z}=\sum_{m=-S}^{S}|p, m\rangle_{z} D_{m, \lambda}^{S}(\hat{p})$

- Even though this looks non relativistic it is relativistic. Notion of LS amplitudes, LS vs. helicity relations are relativistic

Parity $\quad A_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}}(s, t, u)=\eta A_{-\lambda_{1},-\lambda_{2},-\lambda_{3},-\lambda_{4}}(s, t, u)$

How many independent scalar functions describe

$$
\begin{aligned}
& \mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0} \\
& \gamma \mathrm{p}->\pi^{0} \mathrm{p}
\end{aligned}
$$

Crossing symmetry
$\bar{p}_{i}=-p_{i}=\left(-\vec{p}_{i},-E_{i}\right)$

$$
\mathrm{a}\left(\mathrm{p}_{1}\right)+\overline{\mathrm{c}}\left(\overline{\mathrm{p}}_{3}\right) \rightarrow \overline{\mathrm{b}}\left(\overline{\mathrm{p}}_{2}\right)+\mathrm{d}\left(\mathrm{p}_{4}\right)
$$

$a\left(p_{1}\right)+b\left(p_{2}\right) \rightarrow c\left(p_{3}\right)+d\left(p_{4}\right)$

$$
\mathrm{a}\left(\mathrm{p}_{1}\right)+\overline{\mathrm{d}}\left(\overline{\mathrm{p}}_{4}\right) \rightarrow \mathrm{c}\left(\mathrm{p}_{3}\right)+\overline{\mathrm{b}}\left(\overline{\mathrm{p}}_{2}\right)
$$

$$
\mathrm{E}_{\mathrm{c} . \mathrm{m}} \quad s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{1}+p_{\overline{3}}\right)^{2} \quad u=\left(p_{1}+p_{\overline{4}}\right)^{2}
$$

$$
\operatorname{Cos}(\theta) \quad t=\left(p_{1}-p_{3}\right)^{2} \quad s=\left(p_{1}-p_{\overline{2}}\right)^{2} \quad t=\left(p_{1}-p_{3}\right)^{2}
$$

$\operatorname{Cos}(\theta) \quad u=\left(p_{1}-p_{4}\right)^{2}$
$u=\left(p_{1}-p_{4}\right)^{2}$

$$
s=\left(p_{1}-p_{\overline{2}}\right)^{2}
$$

$$
A_{\lambda_{1}, \cdots}^{(s)}(s+i \epsilon, t, u) \rightarrow \sum_{\lambda_{1}^{\prime}, \cdots}\left[D_{\lambda_{1}, \lambda_{1}^{\prime}}^{S_{1}} \cdots\right] A_{\lambda_{1}^{\prime}, \ldots}^{(t)}(s, t+i \epsilon, u) \rightarrow \cdots
$$

- The i ε is important. Function values at, e.g. $\mathrm{s}+\mathrm{i} \varepsilon$ vs $\mathrm{s}-\mathrm{i} \varepsilon$ are different !

Crossing Symmetry : Decays

$a\left(p_{1}\right)+b\left(p_{2}\right) \rightarrow c\left(p_{3}\right)+d\left(p_{4}\right)$

$$
A(s, t, u) \rightarrow A\left(M_{1}^{2}+i \epsilon, s+i \epsilon, t+i \epsilon, u+i \epsilon\right)
$$

- In decay kinematics, the decaying mass becomes a dynamical variable, (iع important)
- Crossing from one kinematical region (e.g. s-channel) to another (e.g. t-channel) requires taking the corresponding variables off the real axis and to the complex plane : analytical continuation.

Analyticity

Feynman diagrams

$$
\begin{aligned}
& A\left(p_{1}, \cdots\right) \propto \int\left[\Pi_{j} d^{4} k_{j}\right] \frac{\text { polynomial in } \mathrm{k}_{j}}{\left(m_{q}^{2}-\left(p_{i}-k_{j}\right)^{2}-i \epsilon\right)\left(\left(k_{i}-k_{j}\right)^{2}-i \epsilon\right) \cdots} \\
& m^{2}-p^{2}=\left[m^{2}+\mathbf{p}^{2}\right]-\left(p^{0}\right)^{2} \\
& m^{2}-p^{2}=0 \rightarrow p^{0}= \pm\left(m^{2}+\mathbf{p}^{2}\right)^{1 / 2} \\
& \text { - Integrand becomes singular when } \\
& \text { intermediate states go on shell. } \\
& \text { - Thresholds for producing physical } \\
& \text { intermediate are the only reason why } \\
& \text { amplitudes are singular. } \\
& \text { - Production of intermediate states is related to } \\
& \text { unitarity. Thus we expect unitarity to } \\
& \text { determine singularities of the amplitudes. }
\end{aligned}
$$

On the role of is

$$
\operatorname{Im}\left[\frac{1}{\sqrt{m^{2}+\mathbf{p}^{2}} \mp i \epsilon-p^{0}}\right]= \pm \pi \delta\left(p_{0}-\sqrt{m^{2}+\mathbf{p}^{2}}\right)
$$

Analyticity and Causality

Dispersion relations

source emits a signal at $\mathrm{t}=0$
consider the Fourier transform ($\mathrm{E} \rightarrow$ energy)

$$
f(E) \equiv \int d t e^{i E t} f(t)
$$

and extend definition to complex plane $\mathrm{E} \rightarrow \mathrm{z}$, then
$f(z)$ is holomorphic for $\operatorname{Im} E>0$

Causality: The outgoing wave cannot appear before the incoming one. Causality determines analytical properties of the scattering amplitude as function on energy/ momenta/scattering angle. The specific from of these conditions depend on the type of interactions and kinematics (e.g. relativistic vs non relativistic)

$$
f^{*}(k)=f\left(-k^{*}\right) \quad f^{*}(E)=f\left(E^{*}\right)
$$

The function is analytical in the whole E-plane not only the upper half

How unitarity constrains singularities

- Unitarity "operates" in the physical domain, i.e. s real and above threshold and $|\operatorname{Cos}(\theta)|<1$. This domain is the boundary of the complex plane where analytical amplitude are defined

$$
A(s+i \epsilon)=A_{\text {physical }}(s=\text { real and above threshold })
$$

$$
\text { sign fixed by "arrow of time } V(\mathrm{t})=\mathrm{V} \exp (-\mathrm{t}|\varepsilon|)
$$

- The difference (discontinuity) $\mathrm{A}(\mathrm{s}+\mathrm{i} \varepsilon)-\mathrm{A}(\mathrm{s}-\mathrm{i} \varepsilon) \neq 0$ (cf. Feynman diagrams), comes from particle production this we expect it being determined by unitarity.

$$
2 I m T_{f t}=\sum_{n} 2 \pi \delta\left(E_{i}-E_{n}\right) T_{f n}^{*} T_{n i}
$$

- Cauchy theorem : singularities determine the amplitude !!!

Causality: Determines domain of analyticity of reaction amplitudes as function of kinematical variables.

Unitarity: Determines singularities.
Crossing: Dynamical relation, aka reaction amplitudes in the exchange channel (forces) are analogous to amplitude in the direct channel (resonance)

These defined the Bootstrap program of the 60's. It is equivalent to nonrelativistic QM, but not to QFT, i.e. "bootstrap equations" do not have unique solutions. For example it failed to reproduce the QCD resonance spectrum, which needs "external parameters". (aka. K-matrix poles, CDD -poles, etc.)

$$
2 \operatorname{Im} T_{f t}=\sum_{n} 2 \pi \delta\left(E_{i}-E_{n}\right) T_{f n}^{*} T_{n i}
$$

Consider elastic scattering of spineless particles

$$
\begin{array}{r}
\operatorname{Im} A(s, t)=\frac{\rho(s)}{16 \pi} \int \frac{d \Omega}{4 \pi} A\left(s, \cos \theta_{1}\right) A^{*}\left(s, \cos \theta_{2}\right) \\
\rho(s)=2 k_{c m}(s) / \sqrt{s}
\end{array}
$$

At fixed s, this is a complicated, integral relation w.r.t momentum transfer, t It is simplified (diagonalized) by expanding $\mathrm{A}(\mathrm{s}, \mathrm{t})$ in partial waves

$$
A(s, t)=16 \pi \sum_{l=0}^{\infty}(2 l+1) f_{l}(s) P_{l}(\cos \theta) \quad \operatorname{Im} f_{l}(s)=\rho(s)\left|f_{l}(s)\right|^{2}
$$

How unitarity constrains singularities

Properties of the partial wave, $\mathrm{f}_{\mathrm{l}}(\mathrm{s})$ (for fixed I as function of s):

- $f_{i}(s)$ is real for s below threshold

$$
f_{l}(s)=\frac{1}{32 \pi} \int_{-1}^{1} d \cos \theta P_{l}(\cos \theta) A(s, t(s, \cos \theta))
$$

- $\operatorname{Im} f_{i}(s)$ is finite above threshold.
- $f_{1}(s)$ is complex for diffidently negative s
- $f_{l}(s)$ is analytical (since $A(s, t)$ is)
\rightarrow Reflection theorem (Calculus 101): $\mathrm{f}_{\mathrm{l}}\left(\mathrm{s}^{*}\right)=\mathrm{f}_{\mathrm{l}}\left(\mathrm{s}^{*}\right)$

Second sheet

$$
f(s-i \epsilon) \quad \text { Singularity }=\text { Resonance at complex } s \text { when }
$$

Define for $\operatorname{Im} \mathrm{s}<0 \quad f_{I I}(s)=\frac{f(s)}{1-2 i \rho(s) f(s)}$

$$
f_{I I}(s-i \epsilon)=f(s+i \epsilon)
$$

This is analytical continuation of $f(s)$ below the real axis

$$
f(s)=\frac{1}{2 i \rho(s)}
$$

II indianauniversity Jefferson Lab

$$
B W(s)=\frac{1}{m_{r}^{2}-s-i m_{r} \Gamma(s)}
$$

Threshold factor

$$
\Gamma(s)=k_{c m}(s) \gamma(s) \text { "rest" } k_{c m} \sim \sqrt{s-s_{t h}}
$$

II indanauniversity Jefferson Lab

For particles with spin

$$
\begin{array}{r}
A_{\lambda_{i}}(s, t)=16 \pi \sum_{J=-M}^{M}(2 J+1) f_{\lambda_{i}}^{J}(s) d_{\lambda, \lambda^{\prime}}^{J}(\theta) \\
M=\max \left(|\lambda|,\left|\lambda^{\prime}\right|\right) \\
\lambda^{\prime}=\lambda_{3}-\lambda_{4} \quad \lambda=\lambda_{1}-\lambda_{2} \\
f_{\lambda_{i}}^{J}(s)=\frac{1}{32 \pi} \int_{-1}^{1} d z_{s} A_{\lambda_{i}}(s, t(s, \theta)) d_{\lambda, \lambda^{\prime}}^{J}(\theta)
\end{array}
$$

- Wigner d-functions lead to kinematical singularities
- Threshold (barrier factors) originate from kinematical factors in relation between t and $\cos (\theta)$ (through dependence of A_{\wedge} on t)
- Unequal masses give lead to "daughter poles"
- Dynamical singularities : from dynamical (unitary cuts) in $\mathrm{A}(\mathrm{s}, \mathrm{t})$.

$$
\begin{aligned}
& \sigma_{a+b \rightarrow a+b} \propto \int \frac{d t}{s^{2}}|A(s, t)|^{2} \\
& \sigma_{a+b \rightarrow X} \propto \xrightarrow{\operatorname{Im} A(s, 0)} \text { from unitarily }
\end{aligned}
$$

Resonance scattering

$\frac{d \sigma}{d t} \propto \frac{|A(s, t)|^{2}}{s^{2}} \quad$ Angular distribution: a few "wiggles"

more pronounced forward/backward peaks as energy increases

Multiple quark/gluon exchanges

- If QCD was confining resonance would appear at all energy and angular momenta (infinitely rising Regge trajectories).
- String/flux tube breaking leads to screening of color charge and resonance seem to appear with finite angular momentum.
- For $I_{\max } \sim 5$ and nteraction range $r_{0} \sim 0.5 f m$ this gives plab $<\sim 10 / f m \sim 2 \mathrm{GeV}$, [or W ~ (2 Plab $\left.\mathrm{m}_{\mathrm{p}}\right)^{1 / 2} \sim 2 \mathrm{GeV}$]
- For resonance scattering

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(s) P_{l}\left(z_{s}(t)\right) \longrightarrow A(s, t) \sim \frac{P_{l_{R}}\left(z_{s}(t)\right)}{s-s_{R}}
$$

Scattering at High energies
$\sigma_{a+b \rightarrow X}=\frac{1}{s} \operatorname{Im} A_{a b \rightarrow a b}(s, 0)$
$\mathrm{P} \cdot \mathrm{P} \rightarrow$ DMDGA N

Smooth behavior constant or powes ${ }^{10}$

- s-dependence:
-many intermediate particles can be produced, unitarity becomes complicated and less useful.
- t-dependence:
-high partial waves become important, several Legendre functions are needed.
- There is universality in both s and t-dependencies: smooth (constant or falling s-dependence), and forward/(backward) peaking in t. The universality hints into importance of $t /(u)$ channel singularities.

As s increase and t is fixed the t-channel resonances (or singularities) stay close relative to s and u channel resonances
$a+\bar{c}->\bar{b}+d$ d the

* Low energies: resonance dominance

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(s) P_{l}\left(z_{s}(t)\right)
$$

in principle $A(s, t)$ determined from schannel unitarity (s-channel dispersion relations) but there are many intervening channels...

* ...looks like resonance in t-channel: hint explore unitarity in t-channel

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(t) P_{l}\left(z_{t}(s)\right)
$$

resonance poles in $f_{f}(t)$ at $t=t_{R}$ can be considered as poles in $I: t_{R}=t(I)-->I=\alpha\left(t_{R}\right)$
thus for large s

$$
A(s, t) \sim s^{l}=s^{\alpha(t)}
$$

to rigorously establish the larges behavior one needs to make sense out of the divergent sum.
(Gribov-Froissart projection + Somerfeld-Watson transformation)

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(t) P_{l}\left(z_{t}\right) \quad s=-\frac{t-4 m^{2}}{2}\left(1-z_{t}\right)
$$

The series converges for $\left|z_{t}\right|<1$ (cosine of scattering angle in the t-channel), ie. in the t-channel physical region. We want to know $A(s, t)$ for in the s-channel physical region, in particular for large s , with corresponds to $\left|z_{t}\right| \gg 1$.
For example, assume $f_{l}(t)=\frac{1}{l-\alpha(t)}$ ie. it has a pole (resonance) where $\alpha(\mathrm{t})=\mathrm{l}$
$A(s, t) \sim J\left(z_{t}\right)=\sum_{l} \frac{z_{t}^{l}}{l-\alpha(t)} \quad$ for $\mathbf{\alpha}<0$ and $\left|\mathrm{z}_{\mathrm{t}}\right|<1$ use $\quad \frac{1}{l-\alpha}=\int_{0}^{\infty} d x e^{-x(l-\alpha)}$
to obtain $J(z)=\int_{0}^{\infty} d x\left[\frac{e^{x \alpha}}{1+z e^{-x}}\right]=z^{\alpha} \int_{0}^{z} \frac{d y}{y^{\alpha+1}(1+y)} \quad y=z e^{-x}$
provides analytical continuation for $\alpha>0$ for large $z=z(s) \sim s$

$$
J(z)=-\frac{z^{\alpha} \pi}{\sin \pi \alpha}+z^{\alpha} \int_{z}^{\infty} \frac{d y}{y^{\alpha+1}(1+y)} \rightarrow-\frac{z^{\alpha} \pi}{\sin \pi \alpha} \quad z \rightarrow \infty
$$

In general use Sommefeld-Watson transformation to sum a series
s-channel: multi-particle production
t-channel: collection of resonances: "Regge" exchanges

*
Rightmost singularity in I-plane dominates large-s limit of the amplitude and forward cross section (it has vacuum quantum numbers: $\operatorname{Pomerona}(0)=1+\varepsilon)$
(exchange of non-vacuum q.n. falls with energy)

凹

Growing Radius, partons, saturation,...

* Where does to parton model come from
adding correlated partons is beneficial (expansion not in g^{2} but in $\mathrm{g}^{2} \log \mathrm{~s}$)
(fast moving, hadron, parton,etc)

$$
\text { (slow moving hadron, vacuum,etc) } \quad \alpha(t)=-1+\beta(t)
$$

... and in space-time assuming Pomeron $\alpha(0)=1$

$$
A\left(s, r_{\perp}\right) \sim \int d^{2} k_{\perp} e^{i k_{\perp} r_{\perp}} e^{\alpha\left(-k_{\perp}^{2}\right) \log s} \sim \frac{1}{\log (s)} e^{-r_{\perp}^{2} / \log (s)} \quad \text { hadron swells }
$$

$$
\Delta E \sim \frac{\mu_{\perp}^{2}}{x(1-x) p_{z}}
$$

* long lived fluctuations finite $<x>$

$$
p_{z} \rightarrow \infty \quad(1-x) p_{z} \hat{} \quad\langle x\rangle^{\langle n\rangle}=\frac{p_{z}}{\mu} \quad\langle n\rangle \sim \log (s)
$$

random walk in transverse space

$$
*\left\langle r_{\perp}\right\rangle \sim \sqrt{\langle n\rangle \frac{1}{\mu_{\perp}}} \sim \log ^{1 / 2}(s)
$$

interaction when commensurate momenta

$$
p=0
$$

S-matrix principles: Crossing symmetry, Analyticity, Unitarity provide important constraints/insights into reaction dynamics.

For example: low energy scaring is dominated by a few direct channel partial waves, resonance appear as poles on the IInd sheet with widths constrained by unitarity, large-s scattering is given by t/u channel exchanges, etc.

In QCD resonances are not predicted by exchange forces (Bootstrap idea), they have to be "inserted by hand".

