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Lecture 1: Hadrons as laboratory for QCD:  

• Introduction to QCD  

• Bare vs effective effective quarks and gluons 

• Phenomenology of Hadrons 

 Lecture 2: Phenomenology of hadron reactions  

•  Kinematics and observables  

• Space time picture of Parton interactions and Regge phenomena 

• Properties of reaction amplitudes  

 Lecture 3: Complex analysis  

Lecture 4: How to extract resonance information from the data  

• Partial waves and resonance properties 

• Amplitude analysis methods (spin complications)

Modern Hadron Spectroscopy : Challenges and Opportunities
Adam Szczepaniak, Indiana University/Jefferson Lab
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Probing QCD resonances (using physical states)2

• When (color neutral) mesons and baryons a smashed, their quarks 
overlap, “stick together” to form resonances (quasi QCD eigenstates). 
They are short lived and decay to lowest energy, asymptotic states (pions, 
K’s, proton,…) 

• Resonances are fundamental to our understanding of QCD dynamics 
since they appear beyond perturbation theory.   

• (QCD) Resonances challenge QFT practitioners to develop all orders 
calculations (still ways to go).  

• (QCD) Resonance lead to extremely rich phenomenology (e.g. XYZ 
states). 

• In practice, one requires tools that relate asymptotic states before collision 
to asymptotic states after collision that include flexible parametrization of 
microscopic dynamics. This is often referred to as amplitude analysis. The 
rest of these lectures will focus on this topic.
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Bound states/Resonances/Asymptotic states 3
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Born approximation : lowest order 
perturbation on free motion

Bound states: compact wave function 
contains interaction to all orders.  

Resonances: particles interact to all orders (like bound states) 
but eventually decay (connect with asymptotically free states). 
Their effect appears in the S-matrix 
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Amplitude analyticity: it is much about complex functions   4

Bound states

Asymptotic statesResonances
Scattering Amplitude

Scattering amplitude describes evolution 
between asymptotic states. The information 
related to formation about resonances is 
“hidden” in unphysical domains (sheets) of the 
kinematical variables.

This “bump” is an indication of a “hidden” 
phenomenon. To uncover it one needs to 
analytically continue outset the physical sheet 

A(s+ i✏) = A
physical

(s = real and above threshold)

s = E2
c.m
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Introduction to Scattering  5

• Time evolution pictures: Schrodinger, Heisenberg, Interaction 

H = Hkin + V ! H0 + V (t)

OI(t) = eiH0O(0)e�iH0t

|tiI = eiH0t|tiS

VI(t) = eiH0V e�iH0te�✏|t|

H0,I(t) = H0

i
d

dt
|tiI = VI(t)|tiI

V ! V (t) = V e�✏|t|

• As t → ± ∞ interaction picture states evolve to eigenstates of Hkin, i.e. to free 
particles 

• At t=0 interactions picture states are solution of the full Hamiltonian

Interaction is switched on adiabatically at t=0 
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S-matrix and T-matrix 6

i
d

dt
|tiI = VI(t)|tiI |tiI = U(t,�1)|initiali

Sfi = hf(t = +1)|i(t = �1i = hf, (out)|i, (in)i
= hf |U(+1,�1)|ii

U(+1,�1) = P exp

✓
�i

Z +1

�1
dtVI(t)

◆

Evolution operator 
• S-matrix 

• T-matrix 

T = V + V G0V + · · ·

= I � 2⇡i�(Ef � Ei)T

G0 =
1

E �H0

E = Ei = Ef
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T matrix : Example 7

Example

Method 1: In coordinate space  
Method 2: Lippmann-Schwinger  (see above)

Nonrelativistic  particle scarring in external potential 

• It has ∞ number of zeros (this is related to ∞ number of poles when calculated to all 
orders) 

T = V + V G0V + · · ·

V =
�

2µa2
�(r � a)

dim� = �1

H =
p2

2µ
+ V

r

V(r)

a

ε

1/ε
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Solution 8

From method 1

f(k) =

h
�� sin

2
(ka)

(ka)2

i

h
1 + �

a
sin(ka) cos(ka)

ka

i
� ik

h
�� sin

2
(ka)

(ka)2

i

f(k) =
K(E)

1� iK(E)k
=

1

K�1(E)� ik

 ∞ of zeros

∞ of  zeros → Poles

E = k2/2µ 

= P (k)
Q(k)
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Solution 9

From method 2

f(k) =
�� sin2(ka)

(ka)2

1� 1
⇡

R1
0 dE0k0

�� sin2(k0a)

(k0a)2

E0�E(k)

k0 = k(E0) =
p
2µE0

K(E) =
�� sin2(ka)

(ka)2

1� 1
⇡<

R
···

 (∞) zeros of K !
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Analyticity 10

K(k = kR + ikI) ! const.+O(e�2kIa) = 1
ik +O(e�2kIa)

f(k) = K(E)
1�iK(E)k = O(e+2ikIa)

Essential singularity at infinity in the physical sheet !

“Conspiracy” between zeros and poles !!! 
E.g. ∞ number of zeros of K(s) are “fixed” by geometry of the sphere (“dynamics”) and  
this specific “physics” fixes all the poles.  

In more general case (no fixed scattering radius) correlation between zeroes and poles 
persist”, an infinite number poles requires infinite number of zeroes (and vice versa)
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S-matrix properties (in relativistic theory) 22

X

f

Pfi = 1

2ImTft =
X

n

2⇡�(Ei � En)T
⇤
fnTni

• Related to transition probability

• Conservation of Probability = Unitarity
Pfi = |hf |S|ii|2 = hi|S†|fihf |S|ii

S†S = I

• Lorentz symmetry: T is a product of Lorentz scalars and covariant factors 
representing wave functions of external states, e.g for  

• Crossing symmetry: the same scalar functions describe all process related by 
permutation of legs between initial and final states (only the wave function change) 

• Analyticity: The scalar functions are analytical functions of invariants 

ū(p1,�1)[A(s, t) + (k1 + k2)µ�
µB(s, t)]u(p2,�2)

v̄(p1, µ1)[A(s, t) + (k1 + k2)µ�
µB(s, t)]u(p2, µ2)

⇡(k1) +N(p1,�1) ! ⇡(k2) +N(p2,�2)

⇡(k1) + ⇡(�k2) ! N̄(�p1, µ1) +N(p2, µ2)
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Lorentz symmetry 23

p2

p3

p4

p1

b

a c

d

u = (p1 � p4)
2 < 0

t = (p1 � p3)
2 < 0

s = (p1 + p2)
2 > (ma +mb)

2
= (E1,cm + E2,cm)2

t = m2
1 +m2

2 � 2E1,cmE2,cm + 2|p1,cm||p2,cm|zs

u = m2
1 +m2

4 � 2E1,cmE4,cm � 2|p1,cm||p4,cm|zs

s+ t+ u =
X

i

m2
i

hp0,�|p,↵i = 2E(p)�(pf � pi)�↵,�

2⇡�(Ef � Ei)iT = hc, d|(S � 1)|a, bi

T = (2⇡)3�(pf � pi)A(s, t, u)

N-to-M scattering depends on 4(N+M)-4-10 = 3(N+M)-10 invariants 

e.g for 2-to-2: 2 invariants related to the c.m. energy and scattering angle 

Dimensions 

r.h.s has dim = -4
A(s,t,u) is a scalar function of mass dimension =0 
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Question 24

How many independent variables describe 

• Decay proces  A → a + b +c  

• Three particle production A +B → a + b + c
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Helicity amplitudes 25

hp3,�3; p4,�4|A|p1,�1; p2,�2i = A�1,�2,�3,�4(s, t, u)

~S · ~p
|~p| |p,�i = �|p,�i

Sz|p,miz = m|p,miz

|p,�i = R(p̂)⇤(|~p|ẑ  0)|0,miz

|p,miz = ⇤(~p 0)|0,miz

|p,�iz =
SX

m=�S

|p,mizDS
m,�(p̂)

A�1,�2,�3,�4(s, t, u) = ⌘A��1,��2,��3,��4(s, t, u)

We work in the c.m. frame 

Helicity states vs canonical spin states:

Exercise show this:

Parity

• Even though this looks non relativistic it is relativistic. Notion of LS amplitudes, 
LS vs. helicity relations are relativistic  
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Question 26

How many independent scalar functions describe  

J/ψ → π+ π- π0

Ɣ p-> π0 p



INDIANA UNIVERSITY

Crossing symmetry 27

1

2

3

4

a(p1) + b(p2) → c(p3) + d(p4)

1

2

3

4

1

2

3

4

_

_ _

a(p1) + c(p3) → b(p2)  + d(p4)
_ _ __

_
a(p1) + d(p4)  → c(p3) + b(p2)

___

_

p̄i = �pi = (�~pi,�Ei)

u = (p1 � p4)
2

s = (p1 + p2)
2

t = (p1 � p3)
2

Ec.m

Cos(θ)

Cos(θ)

s = (p1 � p2̄)
2

t = (p1 + p3̄)
2

u = (p1 � p4)
2

u = (p1 + p4̄)
2

s = (p1 � p2̄)
2

t = (p1 � p3)
2

s t u

A(s)
�1,···(s+ i✏, t, u) !

X

�0
1,···

[DS1

�1,�0
1
· · · ]A(t)

�0
1,···

(s, t+ i✏, u) ! · · ·

• The iε is important. Function values at, e.g. s + iε vs s - iε are different ! 
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Crossing Symmetry : Decays 28

1

2

3

4

1

2

3

4

_
a(p1) + b(p2) → c(p3) + d(p4) a(p1) → b(p2) + c(p3) + d(p4)

_

_

M1 > m2 +m3 +m4

A(s, t, u) ! A(M2
1 + i✏, s+ i✏, t+ i✏, u+ i✏)

• In decay kinematics, the decaying mass becomes a dynamical variable, (iε 
important) 

• Crossing from one kinematical region (e.g. s-channel) to another (e.g. t-channel) 
requires taking the corresponding variables off the real axis and to the complex 
plane : analytical continuation.
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Analyticity 29

Feynman diagrams

p2

p3

p4

p1

b

a c

d

k1

p2-k1

1

m2
q � (p2 � k1)2

1

k2

A(p1, · · · ) /
Z
[⇧jd

4kj ]
polynomial in kj

(m2
q � (pi � kj)2 � i✏)((ki � kj)2 � i✏) · · ·

m2 � p2 = [m2 + p2]� (p0)2

m2 � p2 = 0 ! p0 = ±(m2 + p2)1/2

Im

"
1p

m2 + p2 ⌥ i✏� p0

#
= ±⇡�(p0 �

p
m2 + p2)

• Integrand becomes singular when 
intermediate states go on shell. 

• Thresholds for producing physical 
intermediate are the only reason why 
amplitudes are singular. 

• Production of intermediate states is related to 
unitarity. Thus we expect unitarity to 
determine singularities of the amplitudes.  

On the role of iε
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Analyticity and Causality 30

Dispersion relations

source emits a 
signal at t=0

causality: receiver receives at t>0 and not at t<0

amplitude of the signal

consider the Fourier transform (E  → energy)

and extend definition to complex plane E → z, then 
f(z) is holomorphic for Im E > 0

f(t) / ✓(t)

f(E) ⌘
Z

dteiEtf(t)

Causality:  The outgoing wave cannot appear before the incoming one. Causality 
determines analytical properties of the scattering amplitude as function on energy/
momenta/scattering angle. The specific from of these conditions depend on the type of 
interactions and kinematics (e.g. relativistic vs non relativistic) 
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momentum vs energy planes 31

f⇤(k) = f(�k⇤) f⇤(E) = f(E⇤)

E =
k2

2µ

k =
p

2µE

k

E

The function is analytical in the whole E-plane not only the upper half
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How unitarity constrains singularities  32

2ImTft =
X

n

2⇡�(Ei � En)T
⇤
fnTni

A(s+ i✏) = A
physical

(s = real and above threshold)

• Unitarity “operates” in the physical domain, i.e. s real and above threshold 
and |Cos(θ)|<1. This domain is the boundary of the complex plane  where 
analytical amplitude are defined 

sign fixed by “arrow of time V(t) = V exp(-t |ε|)

• The difference (discontinuity) A(s + iε) - A(s - iε)  ≠ 0 (cf. Feynman diagrams), 
comes from particle production this we expect it being determined by unitarity. 

• Cauchy theorem : singularities determine the amplitude !!! 



INDIANA UNIVERSITY

Relativistic S-matrix fundamentals 33

Causality: Determines domain of analyticity of reaction 
amplitudes as function of kinematical variables.  

Unitarity: Determines singularities. 

Crossing: Dynamical relation, aka reaction amplitudes in 
the exchange channel (forces) are analogous to amplitude 
in the direct channel (resonance) 

These defined the Bootstrap program of the 60’s. It is equivalent to non-
relativistic QM, but not to QFT, i.e. “bootstrap equations” do not have unique 
solutions. For example it failed to reproduce the QCD resonance spectrum, 
which needs ”external parameters”. (aka. K-matrix poles, CDD -poles, etc.) 



P1
P5

P3
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How unitarity constrains singularities: simple example 34

2ImTft =
X

n

2⇡�(Ei � En)T
⇤
fnTni

ImA(s, t) =
⇢(s)

16⇡

Z
d⌦

4⇡
A(s, cos ✓1)A

⇤
(s, cos ✓2)

1

2

3

4

1

2

3

4

5

6
=

1

2

X

5,6

Im

A(s, t) = 16⇡
1X

l=0

(2l + 1)fl(s)Pl(cos ✓) Imfl(s) = ⇢(s)|fl(s)|2

Consider elastic scattering of spineless particles 

⇢(s) = 2kcm(s)/
p
s

At fixed s, this is a complicated, integral relation w.r.t momentum transfer, t 
It is simplified (diagonalized) by expanding A(s,t) in partial waves 
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How unitarity constrains singularities 35

fl(s) =
1

32⇡

Z 1

�1
d cos ✓Pl(cos ✓)A(s, t(s, cos ✓))

→ Reflection theorem (Calculus 101):  fl(s*) = fl(s*) 

Properties of the partial wave, fl(s)  (for fixed l as function of s): 

• fl(s) is real for s below threshold 
• Im fl(s) is finite above threshold.  
• fl(s) is complex for diffidently negative s 
• fl(s) is analytical (since A(s,t) is)

fl(s+iε)

fl(s-iε)

Threshold 
s=(m1+m2)2

• Even though fl(s) has physical meaning for s 
real and above threshold, there is a unique 
function in the complex plane which reduces 
to fl(s) on the real axis (+iε). 

• Furthermore, unitarity which is a condition 
for physical s-values, becomes a restriction  
on the complex function, fl(s). 

1

2i
[fl(s+ i✏)� fl(s� i✏)] = ⇢(s)fl(s+ i✏)fl(s� i✏)
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Second sheet 36

f(s+ i✏) =
f(s� i✏)

1� 2i⇢(s)f(s� i✏)

fII(s) =
f(s)

1� 2i⇢(s)f(s)

fII(s� i✏) = f(s+ i✏)

f(s) =
1

2i⇢(s)

Singularity = Resonance  at complex s when 

Define for Im s < 0 

This is analytical continuation of f(s) 
below the real axis  



INDIANA UNIVERSITY

Breit-Wigner Formula 37

BW (s) =
1

m2
r � s� imr�(s)

�(s) = kcm(s)�(s)

Threshold factor 

“rest” 

kcm ⇠
p
s� sth

|BW |2

Res

Ims

BW (s) ⇠ 1

2� s� 0.8i
p
s� 1

Ims

|BW |2

Res

BW (s) ⇠ 1

2� s+ 0.8
p
1� s
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Kinematical vs Dynamical Singularities 38

� = �1 � �2�0 = �3 � �4

M = max(|�|, |�0|)
�1 �2

�4

�3

A�i(s, t) = 16⇡
MX

J=�M

(2J + 1)fJ
�i
(s)dJ�,�0(✓)

fJ
�i
(s) =

1

32⇡

Z 1

�1
dzsA�i(s, t(s, ✓))d

J
�,�0(✓)

For particles with spin 

• Wigner d-functions lead to kinematical singularities 

• Threshold (barrier factors) originate from kinematical factors in relation 
between t and cos(θ) (through dependence of Aλ on t)  

• Unequal masses give lead to “daughter poles”  

• Dynamical singularities : from dynamical (unitary cuts) in A(s,t). 



from M.Ostrick

�(1232)3/2+

N(1520)3/2�

N(1680)5/2+
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Phenomenology of hadron interaction 39

�a+b!a+b /
Z

dt

s2
|A(s, t)|2

�a+b!X / ImA(s, 0)

s
from unitarily 

Resonance 
 scattering 
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Resonance Scattering 40

d�

dt
/ |A(s, t)|2

s2

from M.Ostrick

Angular distribution: a few “wiggles” 

more pronounced forward/backward peaks as energy increases
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Resonance scattering 41

+ + ...

A(s, t) =
X

l

(2l + 1)fl(s)Pl(zs(t)) A(s, t) ⇠ PlR(zs(t))

s� sR

• If QCD was confining resonance would appear at all energy and angular momenta 
(infinitely rising Regge trajectories). 

• String/flux tube breaking leads to screening of color charge and resonance seem to 
appear with finite angular momentum.  

• For lmax  ~ 5 and nteraction range r0 ~0.5fm this gives plab  <~ 10/fm ~ 2GeV,   
[or W ~ (2 Plab mp )1/2  ~ 2GeV ] 

• For resonance scattering  

Multiple quark/gluon exchanges 

=

→
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Scattering at High energies 42

d�

dt
(s) =

1

s2
|A(s, t)|2

�a+b!X =
1

s
ImAab!ab(s, 0)

Smooth behavior  
constant or power 
low fall off Smooth fall of with t and 

forward/backward 
peking 
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Scattering at high energies 43

• s-dependence:  
•many intermediate particles can be produced, unitarity  becomes 
complicated and less useful.  

• t-dependence:  
•high partial waves become important,  several Legendre functions are 
needed.  

• There is universality in both s and t-dependencies: smooth (constant or falling 
s-dependence), and forward/(backward) peaking in t.  The universality hints 
into importance of t/(u) channel singularities. 
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From t-channel to s-channel  (high energy forward scattering) 44

t

s u

s=4m2

t=4m2

u=4m2

a+b->c+d 
s-channel

a+c->b+d 
t-channel

- -

a+d->c+b 
u-channel

- -

As s increase and t is fixed the 
t-channel resonances (or 
singularities)  stay close relative 
to s and u channel resonances

s increases

t is 
fixed 
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From u-channel to s-channel (high energy backward scattering) 45

t

s u

s=4m2

t=4m2

u=4m2

a+b->c+d 
s-channel

a+c->b+d 
t-channel

- -

a+d->c+b 
u-channel

- -

s increases

u is fixed 

As s increase and u is fixed the 
u-channel resonances (or 
singularities)  stay close relative 
to s and t channel resonances
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Regge phenomena 46

A(s, t) =
X

l

(2l + 1)fl(s)Pl(zs(t))

for s ~ sR   A(s, t) ⇠ PlR(zs(t))

s� sR

  Low energies: resonance dominance

  ...looks like resonance in t-channel: hint explore unitarity in t-channel 

 to rigorously establish the large-s behavior one needs to make sense out of the divergent sum. 
(Gribov-Froissart projection + Somerfeld-Watson transformation) 

resonance poles in fl(t) at t=tR can be considered 
as poles in l: tR=t(l) --> l=α(tR) 

A(s, t) =
X

l

(2l + 1)fl(t)Pl(zt(s))

A(s, t) ⇠ sl = s�(t)
thus for large s 

= + ... ++ ... +
s

t

zs = cos �s

in principle A(s,t) determined from s-
channel unitarity (s-channel dispersion 

relations) but there are many intervening 
channels...

How to extend to high energies  

t

s zt = cos �t
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Example of analytical continuation 47

1

l � �
=

Z 1

0
dxe�x(l��)

J(z) =

Z 1

0
dx


e

x�

1 + ze

�x

�
= z

�

Z z

0

dy

y

�+1(1 + y)
to obtain y = ze�x

For example, assume i.e. it has a pole (resonance) where α(t)=l

z ! 1

for large z =z(s) ~ s

J(z) = � z�⇥

sin⇥�
+ z�

Z 1

z

dy

y�+1(1 + y)
! � z�⇥

sin⇥�

provides analytical continuation for α>0

A(s, t) =
X

l

(2l + 1)fl(t)Pl(zt)

The series converges for |zt|<1 (cosine of scattering angle in the t-channel), i.e. in the t-channel 
physical region. We want to know A(s,t) for in the s-channel physical region, in particular for  
large s, with corresponds to |zt| >> 1.  

s = � t� 4m2

2
(1� zt)

fl(t) =
1

l � ↵(t)

for α<0 and |zt| < 1 use  A(s, t) ⇠ J(zt) =
X

l

zlt
l � ↵(t)

In general use Sommefeld-Watson transformation to sum a series 
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Pomeron vs Reggeons 48

s-channel: multi-particle production t-channel: collection of resonances: “Regge” exchanges 

fl(t) =
r(t)

l � �(t)
<--A(s, t) / r(t)s�(t)

�p� X

 Rightmost singularity in l-plane dominates large-s limit of the 
amplitude and forward cross section (it has vacuum quantum 

numbers:  Pomeronα(0) = 1 + ε) 

 (exchange of non-vacuum q.n. falls with energy)

  

�tot � s� = s0.08

�el ⇠
1

b
s2�(0)�2

A(s, t ⇠ 0) ⇠ is�(0) ⇠ s�tot
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Comparing with Experiment 49

resonance 
region Ecm = 

s1/2 < 2.5 GeV

multi-particle 
production

total cross section 
slowly rises with s
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Growing Radius, partons, saturation,… 50

long lived fluctuations finite <x> 
�E ⇠ µ

2
?

x(1� x)pz   

pz ! 1

p = 0

(1� x)pz

interaction when 
commensurate 

momenta 

hxihni = pz

µ

hni ⇠ log(s)

random walk in transverse space

hr?i ⇠
r

hni 1

µ?
⇠ log

1/2
(s)  

large-s behavior universal  
(Pomeron = vacuum pole,  

universal mid-rapidity)

  

Where does to parton 
model come from 

  

A(s, r?) ⇠
Z

d2k?e
ik?r?e�(�k2

?) log s ⇠ 1

log(s)
e�r2?/ log(s)

... and  in space-time assuming Pomeron α(0)=1

hadron swells

(slow moving hadron,vacuum,etc) 

g2

s

X

n

�n�1
(t)

(n� 1)!

log

n�1 s ! s�(�k2
?)

�(t) = �1 + ⇥(t)

(fast moving, hadron, parton,etc) 

adding correlated partons is  
beneficial (expansion not in g2 but in  g2 log s )

it takes “a long time” to develop a low-x parton out of a fast one   
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Summary of Lecture 2 51

S-matrix principles : Crossing symmetry, Analyticity, Unitarity provide important 
constraints/insights into reaction dynamics.   

For example: low energy scaring is dominated by a few direct channel partial 
waves, resonance appear as poles on the IInd sheet with widths constrained by 
unitarity, large-s scattering is given by t/u channel exchanges, etc.   

In QCD resonances are not predicted by exchange forces (Bootstrap idea), 
they have to be “inserted by hand”. 


