Modern Hadron Spectroscopy : Challenges and Opportunities

Adam Szczepaniak, Indiana University/Jefferson Lab

Lecture 1: Hadrons as laboratory for QCD:

- Introduction to QCD
- Bare vs effective effective quarks and gluons
- Elements of hadron spectroscopy and structure

Lecture 2: Phenomenology of hadron reactions

- Kinematics and observables
- Space time picture of Parton interactions and Regge phenomena
- Properties of reaction amplitudes

Lecture 3: Complex analysis

Lecture 4: How to extract resonance information from the data

- Partial waves and resonance properties
- Amplitude analysis methods (spin complications)

$$
z=a+b i \rightarrow f(z)=\operatorname{Re} f(z)+i \operatorname{Im} f(z)
$$

Elementary functions: you can also think of them as maps of one complex plane (z) to another ($\mathrm{f}(\mathrm{z})$): $\mathrm{z} \rightarrow \mathrm{f}(\mathrm{z})$

To define a function we can use the algebraic relations e.g

$$
f(z)=\sqrt{z} \quad \text { is such that } \quad z=f(z) \times f(z)
$$

Often the mapping is not "one-to-one" and one needs to be careful in defining domains which give a unique value for the function, e.g. is

$$
\sqrt{-25}=+5 I \text { or }-5 I ?
$$

Complex functions (and complex calculus) : Continuity imposes very strong conditions of functions (much stronger than in the case of real variables)
"Smooth" (holomorphic, analytic) functions are "boring" all "action" is in the singularities.

Singularities determine functions "far away" from location of the singularity (e.g. charge determines potentials)

Physical observables are functions of real parameters, however physics law can be generalized to complex domains and become "smooth" but any "constraint" results in singularities.
(exp of complex argument has the same algebraic properties as exp of real arg., e.g. $\left.\exp \left(z_{1} z_{2}\right)=\exp \left(z_{1}\right) \exp \left(z_{2}\right)\right)$

$$
\begin{gathered}
e^{i \phi}=\left[1-\frac{\phi^{2}}{2}+\cdots\right]+i\left[\phi-\frac{\phi^{3}}{3!}+\cdots\right]=\cos \phi+i \sin \phi \\
z \rightarrow e^{z}=e^{R e z+i \operatorname{Im} z}=e^{\operatorname{Rez}}(\cos \operatorname{Im} z+i \sin \operatorname{Im} z) \\
e^{z+2 \pi i}=e^{z}
\end{gathered}
$$

one needs to be careful when defining its inverse i.e. logarithm: the z-plane can be mapped back in many different ways
similar issue with the $\sqrt{ } \mathrm{z}$

$$
z=|z| e^{i \phi}
$$

$$
\begin{gathered}
\sqrt{z} \equiv \sqrt{|z|} e^{i \frac{\phi}{2}} \\
\sqrt{z} \sqrt{z}=\sqrt{|z|} e^{i \frac{\phi}{2}} \sqrt{|z|} e^{i \frac{\phi}{2}}=|z| e^{i \phi}
\end{gathered}
$$

using $\quad \phi=[-\pi, \pi)$

$$
\text { or } \quad \phi=[0,2 \pi)
$$

gives different results for
\sqrt{z}
$\sqrt{z} \equiv \sqrt{|z|} e^{i \frac{\phi}{2}}$
using $\quad \phi=[-\pi, \pi)$
gives square root that is continuous near the positive real axis

 using $\quad \phi=[0,2 \pi)$ gives square root that is discontinuous near the positive real axis

$$
\sqrt{1-i \epsilon} \sim-1
$$

In both case it has the same value when approaching the positive real axis rom above

$\log (z)$

Case A: $-\pi \leq \operatorname{lm} \log z<\pi$

Case B: $0 \leq \operatorname{lm} \log \mathrm{z}<2$ II

Ψ

Powers: $a^{b}=e^{b \log (a)}$ (for chosen branch of log)

$$
\sqrt{z}=e^{\frac{1}{2} \log (z)}=\sqrt{|z|} e^{\left[i \frac{\operatorname{argz}}{2}+(\bmod i \pi)\right]}
$$

for example: using the principal branch ($-\pi \leq \arg z<\pi$)

A. $z \rightarrow \sqrt{z^{2}-1}$

$$
\sqrt{z^{2}-1}=\sqrt{r_{1} r_{2}} e^{i \frac{\phi_{1}+\phi_{2}}{2}}
$$

B. $z \rightarrow \sqrt{z^{2}-1}$

and use principal branches

$$
=\sqrt{z-1} \sqrt{z+1}
$$

$$
\int_{-1}^{1} d x \frac{1}{\sqrt{1-x^{2}}}=\pi
$$

IT indianauniversity Jefferson Lab

Calculus: differentiation

$\mathrm{f}(\mathrm{z})$ is differentiable (holomorphic) if $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0} \text { exists }} \equiv f^{\prime}\left(z_{0}\right)$ write $z=x+i y$ and $f(z)$ as $f(z)=u(x, y)+i v(x, y)$. Since the procedure of taking the limit in definition of $f^{\prime}\left(z_{0}\right)$ is independent of the path taken in $z \rightarrow z_{0}$, you can take two independent paths e.g. path 1 : $\mathrm{x}=\mathrm{x}_{0}+\varepsilon, \mathrm{y}=\mathrm{y}_{0}$ and path 2: $\mathrm{x}=\mathrm{x}_{0}, \mathrm{y}=\mathrm{y}+\varepsilon$: Cauchy relations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

This implies $\Delta u=\Delta v=0$ where Δ is 2-dim Laplacian u, v : harmonic functions

North pole corresponds to ALL points at infinity in the z-plane

Calculus: integration

Line integrals: given a curve C in the complex plane parametrized by a real number $0 \leq t \leq 1, t \rightarrow z(t)=x(t)+i y(t)$ the integral of f over C is defined by

$$
\int_{C} f(z) d z=\int_{t=0}^{1} f(z(t)) \frac{d z}{d t} d t=\lim _{\left|\Delta z_{n}\right| \rightarrow 0, N \rightarrow \infty} \sum_{n=1}^{N} f\left(a_{n}\right) \Delta z_{n}
$$

note: this is an ordered path
We can estimate the integral: if $|f(z)| \leq M>0$ along C then

$$
\left|\int_{C} f(z) d z\right| \leq M s \quad \begin{aligned}
& \text { where s it the length } \\
& \text { of the path }
\end{aligned}
$$

$$
z(1)=z_{N}
$$

$$
z(0)=z_{0}
$$

Cauchy-Goursat theorem: If $f(z)$ is holomorphic in some region G and C is a closed contour (consisting of continuous or discontinuous cycles, double cycles, etc.) then

$$
\oint f(z) d z=0 \quad \text { (converse is also true) }
$$

$$
\int_{S}(\vec{\nabla} \times \vec{A}) \cdot d \vec{S}=\oint_{C} \vec{A} \cdot d \vec{l}
$$

(e.g. Magnetic flux $\vec{B} \equiv \vec{\nabla} \times \vec{A}$ over open surfaces = circulation of vector potential over its boundary)
(Cauchy relation for u, v)
use: $\mathrm{A}_{\mathrm{y}}=\mathrm{u}(\mathrm{x}, \mathrm{y}), \mathrm{A}_{\mathrm{x}}=\mathrm{v}(\mathrm{x}, \mathrm{y})$ then $\frac{\partial A_{y}}{\partial x}=\frac{\partial A_{x}}{\partial y}$ and I.h.s $=0$

$$
\oint(v d x+u d y)=0
$$

$$
\int_{S}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) d x d y=\oint\left(A_{x} d x+A_{y} d y\right)
$$

The Cauchy integral formula: if $f(z)$ holomorphic in $G, z_{0} \in G$, and C a closed curve (cycle), which goes around z_{0} once in positive (counterclockwise) direction, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{z-z_{0}}
$$

The Cauchy formula solves a boundary-value problem. The values of the function on C determine its value in the interior. There is no analogy in the theory of real functions. It is related though to the uniqueness of the Dirichlet boundary-value problem for harmonic functions (in 2dim)

$$
C^{\prime}=C_{\varepsilon}+L_{1}+L_{2}+R
$$

$$
\begin{aligned}
0=\oint_{C^{\prime}}=\lim _{\epsilon \rightarrow 0}\left[\int_{L_{1}}+\int_{L_{2}}+\int_{R}+\int_{C_{\epsilon}}\right]=\lim _{\epsilon \rightarrow 0} \int_{R}+\int_{C_{\epsilon}} \\
\int_{R} \frac{f(z) d z}{z-z_{0}}=f\left(z_{0}\right) \int_{R} \frac{d z}{z-z_{0}}+\int_{R} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z \\
\varepsilon \rightarrow 0: \quad \begin{array}{r}
-2 \pi i \quad \\
z-z_{0}=\epsilon e^{i \phi} \\
\\
\quad-2 \pi i f\left(z_{0}\right)+\int_{C}=0
\end{array}
\end{aligned}
$$

Integrals:

$\int_{\gamma} \frac{d z}{z}$
$\int_{\gamma^{\prime}} \frac{d z}{z}$

$y=$ unit circle

$y^{\prime}=$ unit square
$\int_{\gamma} \frac{d z}{z^{2}}$
Ψ momanuwesar lefferoson Lad

Analytical continuation

For real functions it does not work

Analytical continuation

Let $f_{1}(z)$ be holomorphic in G_{1} and $f_{2}(z)$ in G_{2}, G_{1} and G_{2} intersect on an arch A (or domain D), and $f_{1}=f_{2}$ on A (or D) then f_{1} and f_{2} are analytical continuation of each other and

$$
f(z)=\left\{\begin{array}{l}
f_{1}(z), z \in G_{1} \\
f_{2}(z), z \in G_{2}
\end{array}\right.
$$

is holomorphic in the union of G_{1} and G_{2}

Ψ
$1+z+z^{2}+\cdots$ is holomorphic in $|z|<1$
$\int_{0}^{\infty} e^{-(1-z) t} d t \quad$ is holomorphic in $\operatorname{Re} \mathrm{z}<1$
$-\left(1+1 / z+1 / z^{2}+\cdots\right)$ is holomorphic in $|z|>1$
all these functions represent $f(z)=1 /(1-z)$ in different domains, which is holomorphic everywhere except at the point $z=1$
$\Gamma(z+1)=z \Gamma(z)$: generalization of factorial
$\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)$! so $\Gamma(\mathrm{n})=(\mathrm{n}-1)$!

$$
\Gamma(z)=\int_{0}^{\infty} \frac{d t}{t} t^{z} e^{-t} \quad \Gamma(0) \sim \log 0 \quad \Gamma(-1) \sim \frac{1}{0} \quad \Gamma(-n) \sim \frac{1}{0^{n}}
$$

$$
\begin{gathered}
\Gamma(z) \sim \frac{(-1)^{n}}{n!} \frac{1}{z+n} \\
\quad \text { for } Z \sim-n
\end{gathered}
$$

$$
\Gamma(z)=\lim _{n \rightarrow \infty} \frac{n!n^{z}}{z(z+1) \cdots(z+n)}
$$

II moana unversiry Jefferson Lab

II indianauniversity Jefferson Lab

Continuation of integrals

what are the possibilities for $g(w)$ to be singular?

$$
g(w)=\int_{C} f(z, w) d z
$$

Let D be a neighborhood of the arc C and G be a domain in the w-plane, $f(z, w)$ be regular in both variables, except for a finite number of isolated singularities or branch points.
$g(w)$ can be singular at $w_{0} \in G$ only if

1. $f\left(z, w_{0}\right)$ in z-plane has a singularity coinciding with the end points of the arc C (endpoint singularity)
2. two singularities of $f, z_{1}(w)$ and $z_{2}(w)$, approach the $\operatorname{arc} C$ from opposite sides and pinch the arc precisely at $w=w_{0}$. (pinch singularity)
3. a singularity $\mathrm{z}(\mathrm{w})$ tents to infinity as $\mathrm{w} \rightarrow \mathrm{w}_{0}$ deforming the contour with itself to infinity; one has to change variables to bring the point ∞ to the finite plane to see what happens.

Apparent singularities need not be there!

$$
f(z)=\int_{-1}^{1} \frac{d x}{x-z} \quad \mathrm{C}=[-1,1]
$$

looks like a regular function of z in the entire plane except for the interval $z \in[-1,1]$

Z

... however when z returns to the original point we end up with a different function value. $f(z)$ is multivalued and -1 is a branch point.

