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Lecture 1: Hadrons as laboratory for QCD:  

• Introduction to QCD  

• Bare vs effective effective quarks and gluons 

• Elements of hadron spectroscopy and structure  

 Lecture 2: Phenomenology of hadron reactions  

•  Kinematics and observables  

• Space time picture of Parton interactions and Regge phenomena 

• Properties of reaction amplitudes  

 Lecture 3: Complex analysis  

Lecture 4: How to extract resonance information from the data  

• Partial waves and resonance properties 

• Amplitude analysis methods (spin complications)

Modern Hadron Spectroscopy : Challenges and Opportunities
Adam Szczepaniak, Indiana University/Jefferson Lab
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Complex functions 2

z = a+ bi ! f(z) = Ref(z) + iImf(z)

Elementary functions: you can also think of them as maps of one 
complex plane (z) to another (f(z)):  z→ f(z)

Imf(z)

Ref(z)
Rez

Imz

z ! f(z)

To define a function we can use the algebraic relations e.g

f(z) =
p
z z = f(z)⇥ f(z)is such that 
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Complex functions 3

Imf(z)

Ref(z)
Rez

Imz

z ! f(z)

Often the mapping is not “one-to-one” and one needs to be 
careful in defining domains which give a unique value for the 
function, e.g. is

p
�25 = +5I or� 5I ?



INDIANA UNIVERSITY

Complex functions 4

Complex functions (and complex calculus) : Continuity imposes 
very strong conditions of functions (much stronger than in the 
case of real variables) 

“Smooth” (holomorphic, analytic) functions are 
“boring” all “action” is in the singularities. 

Singularities determine functions “far away” from 
location of the singularity (e.g. charge determines 
potentials) 

Physical observables are functions of real 
parameters, however physics law can be generalized 
to complex domains and become “smooth” but  any 
“constraint” results in singularities.  
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Example 5exp(z) is periodic! 

ez+2⇡i = ez

x = Rez

y = Imz

y0
y0 + 2⇡

z ! ez

one needs to be careful when defining its inverse i.e. logarithm:                  
the z-plane can be mapped back in many different ways

z ! ez = eRez+iImz
= eRez

(cos Imz + i sin Imz)

(exp of complex argument has the same algebraic properties as 
exp of real arg., e.g. exp(z1z2) = exp(z1) exp(z2) )

ei� = [1� �2

2
+ · · · ] + i[�� �3

3!
+ · · · ] = cos�+ i sin�
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Example 6

similar issue with the √z

z = |z|ei�

� = [0, 2⇡)

p
z ⌘

p
|z|ei

�
2

p
z
p
z =

p
|z|ei

�
2

p
|z|ei

�
2 = |z|ei�

� = [�⇡,⇡)using 

or

gives different results for  
p
z

|z|

�

√z
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√z 7

� = [0, 2⇡)

p
z ⌘

p
|z|ei

�
2

� = [�⇡,⇡)using 

gives square root that is 
continuous  near the 
positive real axis 

� ⇠ ✏

� ⇠ �✏

p
1 + i✏ ⇠ +1

p
1� i✏ ⇠ +1

using 

� ⇠ ✏

p
1 + i✏ ⇠ +1

� ⇠ 2⇡ � ✏
p
1� i✏ ⇠ �1

gives square root that is 
discontinuous  near the 
positive real axis 

In both case it has the same value when 
approaching the positive real axis rom above 
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log(z) 8

Case A: -π ≤Im log z < π 

z = |z|ei(�⇡+✏)

z = |z|ei(+⇡�✏)

z ! log z

log |z|+ i(⇡ � ✏)

log |z|� i(⇡ � ✏)

Case B: 0 ≤Im log z< 2 π 
z ! log z

log |z|+ i✏
log |z|+ i(2⇡ � ✏)

z = |z|

z = |z|e�i✏
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Powers 9

Powers: ab = eb log(a) (for chosen branch of log)

z = |z|ei(�⇡+✏)

z = |z|ei(+⇡�✏)

z !
p
z

p
|z|e+i⇡

2

p
|z|e�i⇡

2

for example: using the principal branch (- π ≤ arg z < π)

p
z = e

1
2 log(z) =

p
|z|e[i

argz
2 +(mod i⇡)]
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More complicated functions 10

A. z !
p
z2 � 1 p

z2 � 1 =
p
r1r2e

i
�1+�2

2

ϕ1

ϕ2

r2

r1

z

�1 2 [0, 2⇡)�2 2 [�⇡,⇡)

(Imz ! 0�, z > 1) ! �
p

z2 � 1

! �
p
z2 � 1 (Imz ! 0+, z > 1) ! +

p
z2 � 1

! +
p
z2 � 1 ! i

p
1� z2
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or 11

B. z !
p
z2 � 1

p
z2 � 1 =

p
r1r2e

i
�1+�2

2

�1 2 [�⇡,⇡)

�2 2 [�⇡,⇡)

ϕ1ϕ2

z

! +
p
z2 � 1! �

p
z2 � 1

! �i
p
1� z2

! +i
p
1� z2

and use principal branches 

=
p
z � 1

p
z + 1

z � 1
z + 1

r1, r2 = |z � 1|, |z + 1|



INDIANA UNIVERSITY

Exercise 12

Z 1

�1
dx

1p
1� x

2
= ⇡
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Calculus: differentiation  13

f(z) is differentiable (holomorphic) if  
                                                                                            exists                                               

lim
z!z0

f(z)� f(z0)

z � z0
⌘ f 0(z0)

write z = x + iy and f(z) as f(z) = u(x,y) + i v(x,y). Since the procedure of taking the limit in definition 
of f’(z0) is independent of the path taken in z→z0, you can take two independent paths e.g. path 1: 
x = x0 + ε, y = y0 and path 2:  x = x0, y = y + ε: Cauchy relations: 

z0

z

z

@u

@x

=
@v

@y

,

@u

@y

= �@v

@x

This implies Δu = Δv = 0 
where Δ is 2-dim Laplacian  
u,v : harmonic functions

Infinity: on the real axis there are two (axis 
is oriented) but on the complex plane 
(calculus)  there is no preferred direction: 
There is only ONE infinity (somewhat 
counter intuitive) w = 1/z

df

dz z=1
= � 1

w2

df

dww=0

North pole  corresponds to ALL points at 
infinity in the z-plane
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Calculus: integration 14

Z

C
f(z)dz =

Z 1

t=0
f(z(t))

dz

dt
dt = lim

|�zn|!0,N!1

NX

n=1

f(an)�zn

Line integrals: given a curve C in the complex plane parametrized by a real  
number 0≤ t ≤1, t →z(t) = x(t) + iy(t) the integral of f over C is defined by 

Δzn  = zn - zn-1

C

z(1) = zNz(0) = z0

zn-1
znan

note: this is an ordered path 

We can estimate the integral: if |f(z)|≤M > 0 along C then 

|
Z

C
f(z)dz|  Ms where s it the length 

of the path 

Cauchy-Goursat theorem: If f(z) is holomorphic in some region G and C is a closed 
contour (consisting of continuous or discontinuous cycles, double cycles, etc.) then I

f(z)dz = 0 (converse is also true) 
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Proof: according to Stoke’s theorem 15
Z

S
(~r⇥ ~A) · d~S =

I

C

~A · d~l

~B ⌘ ~r⇥ ~A(e.g. Magnetic flux                   over open surfaces = circulation of 
vector potential over its boundary)                      

~A d~l

d~S
~B

C
S

Z

S

✓
@A

y

@x

� @A

x

@y

◆
dxdy =

I
(A

x

dx+A

y

dy)

use: Ay = u(x,y), Ax = v(x,y) then                    and  l.h.s=0 @A

y

@x

=
@A

x

@y

I
(vdx+ udy) = 0

use: Ay =v(x,y), Ax = -u(x,y) then                    and  l.h.s=0 
@A

y

@x

=
@A

x

@yI
(�udx+ vdy) = 0

(Cauchy relation for u,v)

I
f(z)dz =

I
[u+ iv][dx+ idy] =

I
[udx� vdy] + i

I
[vdx+ udy] = 0

z
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Cauchy formula 16

The Cauchy integral formula: if f(z) holomorphic in G, z0 ∈ G, 
and C a closed curve (cycle), which goes around z0 once in 
positive (counterclockwise) direction, then  

f(z0) =
1

2⇡i

I

C

f(z)dz

z � z0

z0 C

G

The Cauchy formula solves a boundary-value problem. The values of the function on C 
determine its value in the interior. There is no analogy in the theory of real functions. It is related 
though to the uniqueness of the Dirichlet boundary-value problem for harmonic functions (in 
2dim) 
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Proof 17

I

C0

f(z)dz

z � z0
= 0

z0 Cε

C’ = Cε + L1 + L2 + R

ε

z0 C L1

L2

R

ε

limε→0 Cε = C
limε→0 L1 = -L2

Z

R

f(z)dz

z � z0
= f(z0)

Z

R

dz

z � z0
+

Z

R

f(z)� f(z0)

z � z0
dz

ε→0:
z � z0 = ✏ei�

�2⇡i O(✏) ! 0

�2⇡if(z0) +

Z

C
= 0

0 =

I

C0
= lim

✏!0

Z

L1

+

Z

L2

+

Z

R
+

Z

C✏

�
= lim

✏!0

Z

R
+

Z

C✏
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Exercise 18

Z

�
dz

Z

�
zndz

Z

�

dz

z

Z

�0

dz

z
Z

�

dz

z2

γ = unit circle

γ’ = unit square

Integrals: 
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Analytical continuation 19

For real functions it does not work

x

f(x)

f(x) = �1

f(x) =
1

x

2

but for complex functions you can go 
continuously around the z=0 singularity 

and analytically continue from one region 
to another 
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Unique ! 20

Analytical continuation  

Let f1(z) be holomorphic in G1 and f2(z) in G2, G1 and G2 
intersect on an arch A (or domain D), and f1 = f2 on A (or D) 
then f1 and f2 are analytical continuation of each other and  

f(z) =

⇢
f1(z), z 2 G1

f2(z), z 2 G2

is holomorphic in the union of G1 and G2

G1

G2

A
D
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Examples 21

1 + z + z2 + · · · is holomorphic in |z|<1
Z 1

0
e�(1�z)tdt is holomorphic in Re z < 1

�(1 + 1/z + 1/z2 + · · · ) is holomorphic in |z|>1

all these functions represent f(z) = 1/(1-z) in different 
domains, which is holomorphic everywhere except at the 
point  z=1
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Gamma function 22

Γ(z+1) = zΓ(z) : generalization of factorial  
n! = n (n-1)! so Γ(n) = (n-1)!

�(z) =

Z 1

0

dt

t
tze�t

�(0) ⇠ log 0 �(�1) ⇠ 1

0
�(�n) ⇠ 1

0n

�(z) = lim
n!1

n!nz

z(z + 1) · · · (z + n)

for z~-n

�(z) ⇠ (�1)n

n!

1

z + n
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A(s,t) : how to continue from between s and t 23

how analytical continuation 
happens in practice for 
scattering amplitudes

S.Mandelstam 

t

u
s

s-channel

t-channel

u-channel

f(s, t) =
X

n

fn(s)t
n

f(s, t) =
X

n

f 0
n(t)s

n
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Continuation of integrals 24

g(w) =

Z

C
f(z, w)dz

Let D be a neighborhood of the arc C and G be a domain in the w-plane, f(z,w) be 
regular in both variables, except for a finite number of isolated singularities  or branch 
points.

what are the possibilities for g(w) to be singular? 

g(w) can be singular at w0 ∈ G only if 

1. f(z,w0) in z-plane has a singularity coinciding with the end points of the arc C (end-
point singularity) 

2. two singularities of f, z1(w) and z2(w), approach the arc C from opposite sides and 
pinch the arc precisely at w=w0. (pinch singularity)  

3. a singularity z(w) tents to infinity as w→w0 deforming the contour with itself to 
infinity; one has to change variables to bring the point ∞ to the finite plane to see what 
happens.  
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Example 25

Apparent singularities need not be there ! 

f(z) =

Z 1

�1

dx

x� z

looks like a regular function  
of z in the entire plane except  
for  the interval z ∈ [-1,1]C = [-1,1]

-1 1

z

C

when z approaches x deforming 
C allows to define a function f(z) 
which changes continuously 

... however when z returns to the original 
point we end up with a different function 
value. f(z) is multivalued and -1 is a branch 
point.

C’
-1 1


