Axial-Vector Nucleon- $\Delta(1232)$ Transition Form Factors in Chiral Perturbation Theory

Yasemin Ünal Şahin

in collaboration with S. Scherer

Çanakkale Onsekiz Mart University Johannes Gutenberg University

August 31, 2017

Chiral Effective Field Theory and Power Counting

2 Axial-Vector $N \rightarrow \Delta(1232)$ Transition Form Factor

Conclusion & Outlook

Chiral effective field theory

- Chiral perturbation theory (ChPT) is an effective field theory of QCD at low energies.
- Typical scale: $\Lambda_{\chi} \approx 1$ GeV (4 πF).
- Small scale expansion (SSE): treat the mass splitting Δ as an additional small parameter besides the external momenta and quark (meson) masses

$$\Delta \equiv m_{\Delta} - m_{N} = 294 \text{ MeV} \approx 3F_{\pi}.$$

• The explicit inclusion of the $\Delta(1232)$ into an effective pion-nucleon field theory requires

$$\begin{split} \mathcal{L}_{\rm eff} = & \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \mathcal{L}^{(3)} + ..., \\ \mathcal{L}^{(i)} = & \mathcal{L}_{\pi N}^{(i)} + \mathcal{L}_{\pi N \Delta}^{(i)} + \mathcal{L}_{\pi \Delta}^{(i)}, \quad i = 1, 2, 3, \dots \,. \end{split}$$

Power counting (PC)

PC scheme is to decide on relative importance of Feynman diagrams.

- Each diagram is assigned chiral order D.
- Renormalized diagram is of order p^D .
 - Loop integration in n dimensions $\sim \mathcal{O}(p^n)$.
 - Vertex from $\mathcal{L}^{(i)} \sim \mathcal{O}(p^i)$.
 - Nucleon and Δ propagator $\sim \mathcal{O}(p^{-1})$.
 - Pion propagator ~ \$\mathcal{O}(p^{-2})\$.
- Diagrams with higher order D are less important.
 - D ≥1.
 - Loops are suppressed.

Complex-mass renormalization scheme (CMS)

- Generalization of the on-mass-shell scheme to unstable particles. $\Rightarrow m_0 = (m_R + i \frac{\Gamma_R}{2}) + \delta m \equiv z_R + \delta m .$
- Renormalized mass (*z_R*) are chosen as complex pole of full propagator (of unstable particle) in the chiral limit.
- Complex poles for resonances are analogues of real poles for stable particles.
- Renormalized masses are included in the propagators and the counter-terms are treated perturbatively.

Axial-vector $N \rightarrow \Delta(1232)$ transition form factor

- All scattering processes of strongly interacting particles are described by the S-matrix.
- EFT describes the S-matrix of QCD in terms of effective degrees of freedom. Resonances are represented by corresponding fields.
- Neutrino scattering $\nu N \rightarrow \mu \pi N$, $e^- N \rightarrow \Delta \nu_e$
- Axial vector with momentum q^{μ} .
- The nucleon and the delta are on the mass shell

$$p_i^2 = m_N^2, \quad p_f^2 = z_\Delta^2.$$

A processes of weak pion-production.

A schematic diagram for axial $N - \Delta$ transition.

Definition of the matrix element

• The corresponding matrix element between initial nucleon (N) and final delta (Δ) states is parameterized as

$$igg \langle \Delta(p^{'}) \left| -A_{\mu}^{3} \left| N(p)
ight
angle = ar{u}^{\lambda}(p^{'}) [(rac{C_{3}^{A}(q^{2})}{m_{N}}\gamma^{
u} + rac{C_{4}^{A}(q^{2})}{m_{N}^{2}}p^{'
u})(g_{\lambda\mu}g_{\rho
u} - g_{\lambda\rho}g_{\mu
u})q^{
ho} + C_{5}^{A}(q^{2})g_{\lambda\mu} + rac{C_{6}^{A}(q^{2})}{m_{N}^{2}}q_{\lambda}q_{
u}]u(p).$$

 A^3_{μ} : The physically relevant axial isovector current.

 q^{μ} : Momentum transfer, $q^{\mu} = p^{'\mu} - p^{\mu}$.

 m_N : Nucleon mass.

Definition of the matrix element

- The structure of a particle is encoded in several form factors.
- For the weak $N \rightarrow \Delta$ transition: the four form factors of the isovector axial-vector current, $C_3^A(q^2)$, $C_4^A(q^2)$, $C_5^A(q^2)$ and $C_6^A(q^2)$.
- They encode the structure of the matrix elements of the isovector axial-vector current $A^{\mu,i}(x)$ which, in the SU(2) case, is given by

$$\mathcal{A}^{\mu,i} \equiv \bar{q}(x)\gamma^{\mu}\gamma_5 rac{\tau^i}{2}q(x), \quad q = \begin{pmatrix} u \\ d \end{pmatrix}, \quad i = 1, 2, 3.$$

Contributing Feynman diagrams

Fig. I: Tree level and one-loop contributions to the axial $N \to \Delta$ transition form factors at $\mathcal{O}(p^3)$. Single, double, dashed and wiggly lines correspond to nucleon, delta, pion and axial-vector current, respectively.

Contributing Feynman diagrams

Fig. II: Tree level and one-loop contributions to the axial $N \to \Delta$ transition form factors at $\mathcal{O}(p^3)$. Single, double, dashed and wiggly lines correspond to nucleon, delta, pion and axial-vector current, respectively.

Contributing Feynman diagrams

Fig. III: Tree level and one-loop contributions to the axial $N \to \Delta$ transition form factors at $\mathcal{O}(p^3)$. Single, double, dashed and wiggly lines correspond to nucleon, delta, pion and axial-vector current, respectively.

Lagrangians I

$$\begin{split} \mathcal{L}_{2} &= \frac{F^{2}}{4} (Tr[D_{\mu}U(D^{\mu}U)^{\dagger}] + Tr[\chi U^{\dagger} + U\chi^{\dagger}]), \\ \mathcal{L}_{4}^{GL} &= \frac{l_{1}}{4} (Tr[D_{\mu}U(D^{\mu}U)^{\dagger}])^{2} + \frac{l_{2}}{4} Tr[D_{\mu}U(D_{\nu}U)^{\dagger}] Tr[D^{\mu}U(D^{\nu}U)^{\dagger}] \\ &+ \frac{l_{3}}{16} (Tr[\chi U^{\dagger} + U\chi^{\dagger}])^{2} + \frac{l_{4}}{4} Tr[D_{\mu}U(D^{\mu}\chi)^{\dagger}] + D_{\mu}\chi(D^{\mu}U)^{\dagger}] + ..., \\ \mathcal{L}_{\pi N}^{(1)} &= \bar{\Psi}(i \not{D} - m_{N} + \frac{g_{A}}{2} \gamma^{\mu} \gamma_{5} u_{\mu}) \end{split}$$

where

$$\begin{split} \chi &= 2B(s + ip), \\ u_{\mu} &= i[u^{\dagger}\partial_{\mu}u - u\partial_{\mu}u^{\dagger} - i(u^{\dagger}a_{\mu}u + ua_{\mu}u^{\dagger})], \\ U &= u^{2} = \exp\frac{i\phi}{F}, \quad \phi = \vec{\tau} \cdot \vec{\phi}. \end{split}$$

- I_1, I_2, I_3, \dots are known LECs.
- F is pion decay constant, g_A is known axial-vector coupling constant.

Lagrangians II

• The requirement of the consistency of the corresponding EFT in the sense of having the right # of DoF, leads to non-trivial constraints among coupling constants ¹: $g_1 = -g_2 = -g_3 = g_1$ known.

¹N. Wies, J. Gegelia, and S. Scherer, Phys. Rev. D73, 094012 (2006).

Lagrangians III

$$\begin{split} \mathcal{L}_{\pi N\Delta}^{(1)} &= g_{\Delta} \bar{\psi}_{\mu}^{i} P_{ij}^{\frac{3}{2}} (g^{\mu\nu} - \gamma^{\mu} \gamma^{\nu}) u_{\nu}^{j} \Psi + h.c., \\ \mathcal{L}_{\pi N\Delta}^{(2)} &= \bar{\psi}_{\mu}^{i} P_{ij}^{\frac{3}{2}} \theta^{\mu\alpha} [i b_{3} \, \omega_{\alpha\nu}^{j} \gamma^{\nu} - \frac{b_{8}}{m_{N}} \omega_{\alpha\nu}^{j} D^{\nu}] \Psi, \\ \mathcal{L}_{\pi N\Delta}^{(3)} &= \bar{\psi}_{\mu}^{i} P_{ij}^{\frac{3}{2}} \theta^{\mu\nu} (\frac{f_{1}}{m_{N}} [D_{\nu}, \omega_{\alpha\beta}^{j}] i \gamma^{\alpha} D^{\beta} - \frac{f_{2}}{2m_{N}^{2}} [D_{\nu}, \omega_{\alpha\beta}^{j}] \{D^{\alpha}, D^{\beta}\} \\ &+ f_{4} \, \omega_{\nu}^{j} \operatorname{Tr}[\chi_{+}] + f_{5} [D_{\nu}, i \chi_{-}^{j}]) \Psi \end{split}$$

where

$$\begin{aligned} \theta^{\mu\nu} = & \mathbf{g}^{\mu\nu} - \gamma^{\mu}\gamma^{\nu}, \\ \omega^{i}_{\mu\nu} = & \frac{1}{2}\mathsf{Tr}(\tau^{i}[\partial_{\alpha}, u_{\beta}]). \end{aligned}$$

• b_3, b_8, f_1, f_2, f_4 and f_5 are unknown coupling constants ^{2,3}.

 $^2 T.$ R. Hemmert, B. R. Holstein and J. Kambor, J. Phys. G24, 1831 (1998). $^3 De-Liang$ Yao et al., JHEP 1605, 038 (2016).

A contribution from loop and tree

How to extract form factors?

• Diagram[λ, μ] is the result of the diagrams after one reduces the tensor integrals and simplifies the algebra,

 $\mathsf{Diagram}[p_{f}, q, \mu, \nu] := k_{1} p_{f}^{\mu} q^{\nu} + k_{2} q^{\mu} q^{\nu} + k_{3} \gamma^{\mu} q^{\nu} + k_{4} g^{\mu\nu}.$

• $\mathsf{FFs}[p_f, q, \mu, \nu]$ is the structure of the transition matrix element

$$\mathsf{FFs}[p_f, q, \mu, \nu] := [(\frac{C_3}{m_N}\gamma^{\lambda} + \frac{C_4}{m_N^2}p_f^{\lambda})(g_{\mu\nu}g_{\rho\lambda} - g_{\nu\rho}g_{\mu\nu})q^{\rho} + C_5g^{\mu\nu} + \frac{C_6}{m_N^2}q^{\mu}q^{\nu}].$$

•
$$C_3 \to k_3 m_N$$
, $C_4 \to k_1 m_N^2$, $C_6 \to k_2 m_N^2$,
 $C_5 \to \frac{1}{2} (m_\Delta - m_N) (k_1 (m_\Delta + m_N) + 2k_3) + k_1 q^2 + 2k_4)$.

• k_1 : the coefficient of the result corresponding to $p_f^{\mu}q^{\nu}$, $k_2 \rightarrow q^{\mu}q^{\nu}$, $k_3 \rightarrow q^{\nu}\gamma^{\mu}$, $k_4 \rightarrow g^{\mu\nu}$.

Contributions from tree level diagrams

$$\begin{split} C_{3}[q^{2}]_{b} &:= -b_{3}m_{N}, \\ C_{4}[q^{2}]_{b} &:= -b_{8}m_{N}, \\ C_{4}[q^{2}]_{c} &:= (m_{N} - m_{\Delta})(2f_{1}m_{N} - f_{2}(m_{N} + m_{\Delta})) - f_{2}q^{2}/2, \\ C_{5}[q^{2}]_{a} &:= g_{\Delta}, \\ C_{5}[q^{2}]_{b} &:= -(m_{N} - m_{\Delta})(2b_{3}m_{N} + b_{8}(m_{N} + m_{\Delta})) + b_{8}q^{2}/2m_{N} \\ C_{5}[q^{2}]_{c} &:= 32f_{4}M^{2}m_{N}^{2} + (m_{N} - m_{\Delta})^{2}(m_{N} + m_{\Delta})(2f_{1}m_{N} - f_{2}(m_{N} + m_{\Delta})) \\ &\quad + 2f_{1}m_{N}(-m_{N} + m_{\Delta})q^{2} + f_{2}q^{4}/4m_{N}^{2} \end{split}$$

- Dimensions of coupling constants: $b_3(\text{GeV}^{-1})$, $b_8(\text{GeV}^{-1})$, $f_1(\text{GeV}^{-2})$, $f_2(\text{GeV}^{-2})$.
- No dimension of I_4 .

Contributions from tree level diagrams

$$\begin{split} &C_6[q^2]_d := -g_\Delta m_N^2/(q^2 - M^2) \\ &C_6[q^2]_e := -2g_\Delta M^2 m_N^2 l_4 / F^2(q^2 - M^2) \\ &C_6[q^2]_b := -b_3 m_N \\ &C_6[q^2]_c := (m_N - m_\Delta)(2f_1 m_N - f_2(m_N + m_\Delta) - f_2 q^2)/2 \\ &C_6[q^2]_f := b_3 m_N^2 (m_\Delta - m_N)/(q^2 - M^2) \\ &C_6[q^2]_g := -16f_4 M^2 m_N^2 + 8f_5 M^2 m_N^2 + (m_N - m_\Delta)^2 (m_N + m_\Delta) \\ & (2f_1 m_N + f_2(m_N + m_\Delta)) + 2q^2 (m_N - m_\Delta)(f_1 m_N + f_2(m_N + m_\Delta)) - f_2 q^2/4(q^2 - M^2) \end{split}$$

• Dimensions of coupling constants: $f_4(\text{GeV}^{-2})$, $f_5(\text{GeV}^{-2})$.

Preliminary results

Fig. IV: q^2 dependence of C_3^A form factor. Fig. V: q^2 dependence of C_4^A form factor.

Red, blue and green lines correspond to fitted results, imaginary parts and data.

• Fit the data⁴ by fixing six unknown b_3 , b_8 , f_1 , f_2 , f_4 and f_5 parameters.

$$F_i(Q^2)^{A} = \frac{c_i(0)[1+a_i(Q^2)/(b_i+Q^2)]}{(1+Q^2/M_A^2)^2}$$

 $c_i(0)$, a_i , b_i are model-dependent axial-vector FF parameters determined for the Adler model and $M_A = 1.28$ GeV is axial-vector meson mass.

³T. Kitagaki et al., Phys. Rev. D42, 5 (1990).

Preliminary results

Fig. VI: q^2 dependence of C_5^A form factor. Fig. VII: q^2 dependence of C_6^A form factor.

- Because we do ChPT calculation its applicability is restricted to small q^2 .
- C_5^A gives the dominant contribution to the axial transition.
- C_6^A behaves like $1/(q^2 M^2)$ because it has a pion-pole contribution.

Axial charges

Works	$C_{3}^{A}(0)$	$C_{4}^{A}(0)$	$C_{5}^{A}(0)$	$C_{6}^{A}(0)$
Geng et al.	0	-0.29	1.16	\approx -2 (non-pole)
Alexandrou et al.	0	0	0.9	3.5
Hernandez et al.	0	-0.27	1.08	—
Barquilla et al.	0.035	-0.26	0.93	52 (pion-pole)
Kucukarslan et al.	0.12	0.31	1.13	-1.61
Graczyk et al.			1.19 ± 0.08	—
Our work	0.014	-0.29	1.19	15.13

- Geng et all.: (0.0 0.3) GeV², (ChPT).
- Alexandrou et al.: (0.0 2.0) GeV², M_{π} = 350 580 MeV, (LatQCD).
- Hernandez et al.: (0.0 1.0) GeV², (ANL&BNL).
- Barquilla et al.: (0.0 2.0) GeV², (QModel).
- Kucukarslan et al.: (0.0 10) GeV², (LcQCD).
- Graczyk et al.: (0.0 1.0) GeV²,(ANL&BNL)

- The axial Nucleon to $\Delta(1232)$ transition form factors up to one-loop order in relativistic baryon chiral perturbation theory.
- Since Δ is an unstable particle \Rightarrow CMS as a renormalization scheme.
- Fit the results to Kitagaki-Adler phenomenological form factors for the unknown free parameters.
 - Obtained the q^2 dependence of $C_3^A(q^2)$ should exist at $\mathcal{O}(p)^3$ conradicting with the model.
 - For $C_4^A(q^2)$, the q^2 dependence is weak compared to $C_5^A(q^2)$.
 - The contribution of $C_5^A(q^2)$ exhibits rich structure.
 - The dominant contribution comes from $C_6^A(q^2)$ because of the pion-pole.
- Our results have a reasonable agreement with other theoretical approaches.